Loading…
Probing the correlation between insulin activity and structural stability through introduction of the rigid A6–A11 bond
The development of fast-acting and highly stable insulin analogues is challenging. Insulin undergoes structural transitions essential for binding and activation of the insulin receptor (IR), but these conformational changes can also affect insulin stability. Previously, we substituted the insulin A6...
Saved in:
Published in: | The Journal of biological chemistry 2018-07, Vol.293 (30), p.11928-11943 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c447t-6dfbe45e5af7fcd1c678d4783b7e56a0042606280e6a1dd731d25b16b47e3e2b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c447t-6dfbe45e5af7fcd1c678d4783b7e56a0042606280e6a1dd731d25b16b47e3e2b3 |
container_end_page | 11943 |
container_issue | 30 |
container_start_page | 11928 |
container_title | The Journal of biological chemistry |
container_volume | 293 |
creator | Ong, Shee Chee Belgi, Alessia van Lierop, Bianca Delaine, Carlie Andrikopoulos, Sofianos MacRaild, Christopher A. Norton, Raymond S. Haworth, Naomi L. Robinson, Andrea J. Forbes, Briony E. |
description | The development of fast-acting and highly stable insulin analogues is challenging. Insulin undergoes structural transitions essential for binding and activation of the insulin receptor (IR), but these conformational changes can also affect insulin stability. Previously, we substituted the insulin A6–A11 cystine with a rigid, non-reducible C=C linkage (“dicarba” linkage). A cis-alkene permitted the conformational flexibility of the A-chain N-terminal helix necessary for high-affinity IR binding, resulting in surprisingly rapid activity in vivo. Here, we show that, unlike the rapidly acting LysB28ProB29 insulin analogue (KP insulin), cis-dicarba insulin is not inherently monomeric. We also show that cis-dicarba KP insulin lowers blood glucose levels even more rapidly than KP insulin, suggesting that an inability to oligomerize is not responsible for the observed rapid activity onset of cis-dicarba analogues. Although rapid-acting, neither dicarba species is stable, as assessed by fibrillation and thermodynamics assays. MALDI analyses and molecular dynamics simulations of cis-dicarba insulin revealed a previously unidentified role of the A6–A11 linkage in insulin conformational dynamics. By controlling the conformational flexibility of the insulin B-chain helix, this linkage affects overall insulin structural stability. This effect is independent of its regulation of the A-chain N-terminal helix flexibility necessary for IR engagement. We conclude that high-affinity IR binding, rapid in vivo activity, and insulin stability can be regulated by the specific conformational arrangement of the A6–A11 linkage. This detailed understanding of insulin's structural dynamics may aid in the future design of rapid-acting insulin analogues with improved stability. |
doi_str_mv | 10.1074/jbc.RA118.002486 |
format | article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6066309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820317841</els_id><sourcerecordid>29899115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-6dfbe45e5af7fcd1c678d4783b7e56a0042606280e6a1dd731d25b16b47e3e2b3</originalsourceid><addsrcrecordid>eNp1kctKAzEUhoMotl72riQvMDWZS2bGhVDEGxQUUXAXcjnTRqaJZDKV7nwH39AnMW1VdGE2CfnP_-Wc_AgdUTKipMxPnqUa3Y8prUaEpHnFttCQkipLsoI-baNhvKRJnRbVAO113TOJK6_pLhqkdVXXlBZDtLzzTho7xWEGWDnvoRXBOIslhFcAi43t-tZYLFQwCxOWWFiNu-B7FXov2ngU0rQrIcy866ez6Aje6aivMK5Zk72ZGo3H7OPtPbaLpbP6AO00ou3g8GvfR4-XFw_n18nk9urmfDxJVJ6XIWG6kZAXUIimbJSmipWVzssqkyUUTMSJUkZYWhFggmpdZlSnhaRM5iVkkMpsH51tuC-9nINWENsTLX_xZi78kjth-F_FmhmfugWPWJaROgLIBqC86zoPzY-XEr6KgccY-DoGvokhWo5_v_lj-P73WHC6KYA4-cKA550yYBVo40EFrp35n_4J7zWcZQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Probing the correlation between insulin activity and structural stability through introduction of the rigid A6–A11 bond</title><source>Open Access: PubMed Central</source><source>ScienceDirect Journals</source><creator>Ong, Shee Chee ; Belgi, Alessia ; van Lierop, Bianca ; Delaine, Carlie ; Andrikopoulos, Sofianos ; MacRaild, Christopher A. ; Norton, Raymond S. ; Haworth, Naomi L. ; Robinson, Andrea J. ; Forbes, Briony E.</creator><creatorcontrib>Ong, Shee Chee ; Belgi, Alessia ; van Lierop, Bianca ; Delaine, Carlie ; Andrikopoulos, Sofianos ; MacRaild, Christopher A. ; Norton, Raymond S. ; Haworth, Naomi L. ; Robinson, Andrea J. ; Forbes, Briony E.</creatorcontrib><description>The development of fast-acting and highly stable insulin analogues is challenging. Insulin undergoes structural transitions essential for binding and activation of the insulin receptor (IR), but these conformational changes can also affect insulin stability. Previously, we substituted the insulin A6–A11 cystine with a rigid, non-reducible C=C linkage (“dicarba” linkage). A cis-alkene permitted the conformational flexibility of the A-chain N-terminal helix necessary for high-affinity IR binding, resulting in surprisingly rapid activity in vivo. Here, we show that, unlike the rapidly acting LysB28ProB29 insulin analogue (KP insulin), cis-dicarba insulin is not inherently monomeric. We also show that cis-dicarba KP insulin lowers blood glucose levels even more rapidly than KP insulin, suggesting that an inability to oligomerize is not responsible for the observed rapid activity onset of cis-dicarba analogues. Although rapid-acting, neither dicarba species is stable, as assessed by fibrillation and thermodynamics assays. MALDI analyses and molecular dynamics simulations of cis-dicarba insulin revealed a previously unidentified role of the A6–A11 linkage in insulin conformational dynamics. By controlling the conformational flexibility of the insulin B-chain helix, this linkage affects overall insulin structural stability. This effect is independent of its regulation of the A-chain N-terminal helix flexibility necessary for IR engagement. We conclude that high-affinity IR binding, rapid in vivo activity, and insulin stability can be regulated by the specific conformational arrangement of the A6–A11 linkage. This detailed understanding of insulin's structural dynamics may aid in the future design of rapid-acting insulin analogues with improved stability.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.RA118.002486</identifier><identifier>PMID: 29899115</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; biophysical studies ; biophysics ; Blood Glucose - metabolism ; Cell Line ; conformational change ; Crystallography, X-Ray ; Cysteine - chemistry ; Cysteine - pharmacology ; dicarba peptides ; disulfide ; disulfide bonds ; Humans ; Hypoglycemic Agents - chemistry ; Hypoglycemic Agents - pharmacology ; insulin ; Insulin - analogs & derivatives ; Insulin - pharmacology ; Male ; Mice ; Mice, Inbred C57BL ; Molecular Biophysics ; molecular dynamics ; Molecular Dynamics Simulation ; NIH 3T3 Cells ; Protein Conformation ; Protein Stability ; Receptor, Insulin - metabolism ; Thermodynamics</subject><ispartof>The Journal of biological chemistry, 2018-07, Vol.293 (30), p.11928-11943</ispartof><rights>2018 © 2018 Ong et al.</rights><rights>2018 Ong et al.</rights><rights>2018 Ong et al. 2018 Ong et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-6dfbe45e5af7fcd1c678d4783b7e56a0042606280e6a1dd731d25b16b47e3e2b3</citedby><cites>FETCH-LOGICAL-c447t-6dfbe45e5af7fcd1c678d4783b7e56a0042606280e6a1dd731d25b16b47e3e2b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6066309/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925820317841$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29899115$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ong, Shee Chee</creatorcontrib><creatorcontrib>Belgi, Alessia</creatorcontrib><creatorcontrib>van Lierop, Bianca</creatorcontrib><creatorcontrib>Delaine, Carlie</creatorcontrib><creatorcontrib>Andrikopoulos, Sofianos</creatorcontrib><creatorcontrib>MacRaild, Christopher A.</creatorcontrib><creatorcontrib>Norton, Raymond S.</creatorcontrib><creatorcontrib>Haworth, Naomi L.</creatorcontrib><creatorcontrib>Robinson, Andrea J.</creatorcontrib><creatorcontrib>Forbes, Briony E.</creatorcontrib><title>Probing the correlation between insulin activity and structural stability through introduction of the rigid A6–A11 bond</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The development of fast-acting and highly stable insulin analogues is challenging. Insulin undergoes structural transitions essential for binding and activation of the insulin receptor (IR), but these conformational changes can also affect insulin stability. Previously, we substituted the insulin A6–A11 cystine with a rigid, non-reducible C=C linkage (“dicarba” linkage). A cis-alkene permitted the conformational flexibility of the A-chain N-terminal helix necessary for high-affinity IR binding, resulting in surprisingly rapid activity in vivo. Here, we show that, unlike the rapidly acting LysB28ProB29 insulin analogue (KP insulin), cis-dicarba insulin is not inherently monomeric. We also show that cis-dicarba KP insulin lowers blood glucose levels even more rapidly than KP insulin, suggesting that an inability to oligomerize is not responsible for the observed rapid activity onset of cis-dicarba analogues. Although rapid-acting, neither dicarba species is stable, as assessed by fibrillation and thermodynamics assays. MALDI analyses and molecular dynamics simulations of cis-dicarba insulin revealed a previously unidentified role of the A6–A11 linkage in insulin conformational dynamics. By controlling the conformational flexibility of the insulin B-chain helix, this linkage affects overall insulin structural stability. This effect is independent of its regulation of the A-chain N-terminal helix flexibility necessary for IR engagement. We conclude that high-affinity IR binding, rapid in vivo activity, and insulin stability can be regulated by the specific conformational arrangement of the A6–A11 linkage. This detailed understanding of insulin's structural dynamics may aid in the future design of rapid-acting insulin analogues with improved stability.</description><subject>Animals</subject><subject>biophysical studies</subject><subject>biophysics</subject><subject>Blood Glucose - metabolism</subject><subject>Cell Line</subject><subject>conformational change</subject><subject>Crystallography, X-Ray</subject><subject>Cysteine - chemistry</subject><subject>Cysteine - pharmacology</subject><subject>dicarba peptides</subject><subject>disulfide</subject><subject>disulfide bonds</subject><subject>Humans</subject><subject>Hypoglycemic Agents - chemistry</subject><subject>Hypoglycemic Agents - pharmacology</subject><subject>insulin</subject><subject>Insulin - analogs & derivatives</subject><subject>Insulin - pharmacology</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Molecular Biophysics</subject><subject>molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>NIH 3T3 Cells</subject><subject>Protein Conformation</subject><subject>Protein Stability</subject><subject>Receptor, Insulin - metabolism</subject><subject>Thermodynamics</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kctKAzEUhoMotl72riQvMDWZS2bGhVDEGxQUUXAXcjnTRqaJZDKV7nwH39AnMW1VdGE2CfnP_-Wc_AgdUTKipMxPnqUa3Y8prUaEpHnFttCQkipLsoI-baNhvKRJnRbVAO113TOJK6_pLhqkdVXXlBZDtLzzTho7xWEGWDnvoRXBOIslhFcAi43t-tZYLFQwCxOWWFiNu-B7FXov2ngU0rQrIcy866ez6Aje6aivMK5Zk72ZGo3H7OPtPbaLpbP6AO00ou3g8GvfR4-XFw_n18nk9urmfDxJVJ6XIWG6kZAXUIimbJSmipWVzssqkyUUTMSJUkZYWhFggmpdZlSnhaRM5iVkkMpsH51tuC-9nINWENsTLX_xZi78kjth-F_FmhmfugWPWJaROgLIBqC86zoPzY-XEr6KgccY-DoGvokhWo5_v_lj-P73WHC6KYA4-cKA550yYBVo40EFrp35n_4J7zWcZQ</recordid><startdate>20180727</startdate><enddate>20180727</enddate><creator>Ong, Shee Chee</creator><creator>Belgi, Alessia</creator><creator>van Lierop, Bianca</creator><creator>Delaine, Carlie</creator><creator>Andrikopoulos, Sofianos</creator><creator>MacRaild, Christopher A.</creator><creator>Norton, Raymond S.</creator><creator>Haworth, Naomi L.</creator><creator>Robinson, Andrea J.</creator><creator>Forbes, Briony E.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20180727</creationdate><title>Probing the correlation between insulin activity and structural stability through introduction of the rigid A6–A11 bond</title><author>Ong, Shee Chee ; Belgi, Alessia ; van Lierop, Bianca ; Delaine, Carlie ; Andrikopoulos, Sofianos ; MacRaild, Christopher A. ; Norton, Raymond S. ; Haworth, Naomi L. ; Robinson, Andrea J. ; Forbes, Briony E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-6dfbe45e5af7fcd1c678d4783b7e56a0042606280e6a1dd731d25b16b47e3e2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>biophysical studies</topic><topic>biophysics</topic><topic>Blood Glucose - metabolism</topic><topic>Cell Line</topic><topic>conformational change</topic><topic>Crystallography, X-Ray</topic><topic>Cysteine - chemistry</topic><topic>Cysteine - pharmacology</topic><topic>dicarba peptides</topic><topic>disulfide</topic><topic>disulfide bonds</topic><topic>Humans</topic><topic>Hypoglycemic Agents - chemistry</topic><topic>Hypoglycemic Agents - pharmacology</topic><topic>insulin</topic><topic>Insulin - analogs & derivatives</topic><topic>Insulin - pharmacology</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Molecular Biophysics</topic><topic>molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>NIH 3T3 Cells</topic><topic>Protein Conformation</topic><topic>Protein Stability</topic><topic>Receptor, Insulin - metabolism</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ong, Shee Chee</creatorcontrib><creatorcontrib>Belgi, Alessia</creatorcontrib><creatorcontrib>van Lierop, Bianca</creatorcontrib><creatorcontrib>Delaine, Carlie</creatorcontrib><creatorcontrib>Andrikopoulos, Sofianos</creatorcontrib><creatorcontrib>MacRaild, Christopher A.</creatorcontrib><creatorcontrib>Norton, Raymond S.</creatorcontrib><creatorcontrib>Haworth, Naomi L.</creatorcontrib><creatorcontrib>Robinson, Andrea J.</creatorcontrib><creatorcontrib>Forbes, Briony E.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ong, Shee Chee</au><au>Belgi, Alessia</au><au>van Lierop, Bianca</au><au>Delaine, Carlie</au><au>Andrikopoulos, Sofianos</au><au>MacRaild, Christopher A.</au><au>Norton, Raymond S.</au><au>Haworth, Naomi L.</au><au>Robinson, Andrea J.</au><au>Forbes, Briony E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing the correlation between insulin activity and structural stability through introduction of the rigid A6–A11 bond</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2018-07-27</date><risdate>2018</risdate><volume>293</volume><issue>30</issue><spage>11928</spage><epage>11943</epage><pages>11928-11943</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The development of fast-acting and highly stable insulin analogues is challenging. Insulin undergoes structural transitions essential for binding and activation of the insulin receptor (IR), but these conformational changes can also affect insulin stability. Previously, we substituted the insulin A6–A11 cystine with a rigid, non-reducible C=C linkage (“dicarba” linkage). A cis-alkene permitted the conformational flexibility of the A-chain N-terminal helix necessary for high-affinity IR binding, resulting in surprisingly rapid activity in vivo. Here, we show that, unlike the rapidly acting LysB28ProB29 insulin analogue (KP insulin), cis-dicarba insulin is not inherently monomeric. We also show that cis-dicarba KP insulin lowers blood glucose levels even more rapidly than KP insulin, suggesting that an inability to oligomerize is not responsible for the observed rapid activity onset of cis-dicarba analogues. Although rapid-acting, neither dicarba species is stable, as assessed by fibrillation and thermodynamics assays. MALDI analyses and molecular dynamics simulations of cis-dicarba insulin revealed a previously unidentified role of the A6–A11 linkage in insulin conformational dynamics. By controlling the conformational flexibility of the insulin B-chain helix, this linkage affects overall insulin structural stability. This effect is independent of its regulation of the A-chain N-terminal helix flexibility necessary for IR engagement. We conclude that high-affinity IR binding, rapid in vivo activity, and insulin stability can be regulated by the specific conformational arrangement of the A6–A11 linkage. This detailed understanding of insulin's structural dynamics may aid in the future design of rapid-acting insulin analogues with improved stability.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>29899115</pmid><doi>10.1074/jbc.RA118.002486</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2018-07, Vol.293 (30), p.11928-11943 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6066309 |
source | Open Access: PubMed Central; ScienceDirect Journals |
subjects | Animals biophysical studies biophysics Blood Glucose - metabolism Cell Line conformational change Crystallography, X-Ray Cysteine - chemistry Cysteine - pharmacology dicarba peptides disulfide disulfide bonds Humans Hypoglycemic Agents - chemistry Hypoglycemic Agents - pharmacology insulin Insulin - analogs & derivatives Insulin - pharmacology Male Mice Mice, Inbred C57BL Molecular Biophysics molecular dynamics Molecular Dynamics Simulation NIH 3T3 Cells Protein Conformation Protein Stability Receptor, Insulin - metabolism Thermodynamics |
title | Probing the correlation between insulin activity and structural stability through introduction of the rigid A6–A11 bond |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A41%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20the%20correlation%20between%20insulin%20activity%20and%20structural%20stability%20through%20introduction%20of%20the%20rigid%20A6%E2%80%93A11%20bond&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Ong,%20Shee%20Chee&rft.date=2018-07-27&rft.volume=293&rft.issue=30&rft.spage=11928&rft.epage=11943&rft.pages=11928-11943&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.RA118.002486&rft_dat=%3Cpubmed_cross%3E29899115%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c447t-6dfbe45e5af7fcd1c678d4783b7e56a0042606280e6a1dd731d25b16b47e3e2b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/29899115&rfr_iscdi=true |