Loading…

Probing the correlation between insulin activity and structural stability through introduction of the rigid A6–A11 bond

The development of fast-acting and highly stable insulin analogues is challenging. Insulin undergoes structural transitions essential for binding and activation of the insulin receptor (IR), but these conformational changes can also affect insulin stability. Previously, we substituted the insulin A6...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2018-07, Vol.293 (30), p.11928-11943
Main Authors: Ong, Shee Chee, Belgi, Alessia, van Lierop, Bianca, Delaine, Carlie, Andrikopoulos, Sofianos, MacRaild, Christopher A., Norton, Raymond S., Haworth, Naomi L., Robinson, Andrea J., Forbes, Briony E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c447t-6dfbe45e5af7fcd1c678d4783b7e56a0042606280e6a1dd731d25b16b47e3e2b3
cites cdi_FETCH-LOGICAL-c447t-6dfbe45e5af7fcd1c678d4783b7e56a0042606280e6a1dd731d25b16b47e3e2b3
container_end_page 11943
container_issue 30
container_start_page 11928
container_title The Journal of biological chemistry
container_volume 293
creator Ong, Shee Chee
Belgi, Alessia
van Lierop, Bianca
Delaine, Carlie
Andrikopoulos, Sofianos
MacRaild, Christopher A.
Norton, Raymond S.
Haworth, Naomi L.
Robinson, Andrea J.
Forbes, Briony E.
description The development of fast-acting and highly stable insulin analogues is challenging. Insulin undergoes structural transitions essential for binding and activation of the insulin receptor (IR), but these conformational changes can also affect insulin stability. Previously, we substituted the insulin A6–A11 cystine with a rigid, non-reducible C=C linkage (“dicarba” linkage). A cis-alkene permitted the conformational flexibility of the A-chain N-terminal helix necessary for high-affinity IR binding, resulting in surprisingly rapid activity in vivo. Here, we show that, unlike the rapidly acting LysB28ProB29 insulin analogue (KP insulin), cis-dicarba insulin is not inherently monomeric. We also show that cis-dicarba KP insulin lowers blood glucose levels even more rapidly than KP insulin, suggesting that an inability to oligomerize is not responsible for the observed rapid activity onset of cis-dicarba analogues. Although rapid-acting, neither dicarba species is stable, as assessed by fibrillation and thermodynamics assays. MALDI analyses and molecular dynamics simulations of cis-dicarba insulin revealed a previously unidentified role of the A6–A11 linkage in insulin conformational dynamics. By controlling the conformational flexibility of the insulin B-chain helix, this linkage affects overall insulin structural stability. This effect is independent of its regulation of the A-chain N-terminal helix flexibility necessary for IR engagement. We conclude that high-affinity IR binding, rapid in vivo activity, and insulin stability can be regulated by the specific conformational arrangement of the A6–A11 linkage. This detailed understanding of insulin's structural dynamics may aid in the future design of rapid-acting insulin analogues with improved stability.
doi_str_mv 10.1074/jbc.RA118.002486
format article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6066309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820317841</els_id><sourcerecordid>29899115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-6dfbe45e5af7fcd1c678d4783b7e56a0042606280e6a1dd731d25b16b47e3e2b3</originalsourceid><addsrcrecordid>eNp1kctKAzEUhoMotl72riQvMDWZS2bGhVDEGxQUUXAXcjnTRqaJZDKV7nwH39AnMW1VdGE2CfnP_-Wc_AgdUTKipMxPnqUa3Y8prUaEpHnFttCQkipLsoI-baNhvKRJnRbVAO113TOJK6_pLhqkdVXXlBZDtLzzTho7xWEGWDnvoRXBOIslhFcAi43t-tZYLFQwCxOWWFiNu-B7FXov2ngU0rQrIcy866ez6Aje6aivMK5Zk72ZGo3H7OPtPbaLpbP6AO00ou3g8GvfR4-XFw_n18nk9urmfDxJVJ6XIWG6kZAXUIimbJSmipWVzssqkyUUTMSJUkZYWhFggmpdZlSnhaRM5iVkkMpsH51tuC-9nINWENsTLX_xZi78kjth-F_FmhmfugWPWJaROgLIBqC86zoPzY-XEr6KgccY-DoGvokhWo5_v_lj-P73WHC6KYA4-cKA550yYBVo40EFrp35n_4J7zWcZQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Probing the correlation between insulin activity and structural stability through introduction of the rigid A6–A11 bond</title><source>Open Access: PubMed Central</source><source>ScienceDirect Journals</source><creator>Ong, Shee Chee ; Belgi, Alessia ; van Lierop, Bianca ; Delaine, Carlie ; Andrikopoulos, Sofianos ; MacRaild, Christopher A. ; Norton, Raymond S. ; Haworth, Naomi L. ; Robinson, Andrea J. ; Forbes, Briony E.</creator><creatorcontrib>Ong, Shee Chee ; Belgi, Alessia ; van Lierop, Bianca ; Delaine, Carlie ; Andrikopoulos, Sofianos ; MacRaild, Christopher A. ; Norton, Raymond S. ; Haworth, Naomi L. ; Robinson, Andrea J. ; Forbes, Briony E.</creatorcontrib><description>The development of fast-acting and highly stable insulin analogues is challenging. Insulin undergoes structural transitions essential for binding and activation of the insulin receptor (IR), but these conformational changes can also affect insulin stability. Previously, we substituted the insulin A6–A11 cystine with a rigid, non-reducible C=C linkage (“dicarba” linkage). A cis-alkene permitted the conformational flexibility of the A-chain N-terminal helix necessary for high-affinity IR binding, resulting in surprisingly rapid activity in vivo. Here, we show that, unlike the rapidly acting LysB28ProB29 insulin analogue (KP insulin), cis-dicarba insulin is not inherently monomeric. We also show that cis-dicarba KP insulin lowers blood glucose levels even more rapidly than KP insulin, suggesting that an inability to oligomerize is not responsible for the observed rapid activity onset of cis-dicarba analogues. Although rapid-acting, neither dicarba species is stable, as assessed by fibrillation and thermodynamics assays. MALDI analyses and molecular dynamics simulations of cis-dicarba insulin revealed a previously unidentified role of the A6–A11 linkage in insulin conformational dynamics. By controlling the conformational flexibility of the insulin B-chain helix, this linkage affects overall insulin structural stability. This effect is independent of its regulation of the A-chain N-terminal helix flexibility necessary for IR engagement. We conclude that high-affinity IR binding, rapid in vivo activity, and insulin stability can be regulated by the specific conformational arrangement of the A6–A11 linkage. This detailed understanding of insulin's structural dynamics may aid in the future design of rapid-acting insulin analogues with improved stability.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.RA118.002486</identifier><identifier>PMID: 29899115</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; biophysical studies ; biophysics ; Blood Glucose - metabolism ; Cell Line ; conformational change ; Crystallography, X-Ray ; Cysteine - chemistry ; Cysteine - pharmacology ; dicarba peptides ; disulfide ; disulfide bonds ; Humans ; Hypoglycemic Agents - chemistry ; Hypoglycemic Agents - pharmacology ; insulin ; Insulin - analogs &amp; derivatives ; Insulin - pharmacology ; Male ; Mice ; Mice, Inbred C57BL ; Molecular Biophysics ; molecular dynamics ; Molecular Dynamics Simulation ; NIH 3T3 Cells ; Protein Conformation ; Protein Stability ; Receptor, Insulin - metabolism ; Thermodynamics</subject><ispartof>The Journal of biological chemistry, 2018-07, Vol.293 (30), p.11928-11943</ispartof><rights>2018 © 2018 Ong et al.</rights><rights>2018 Ong et al.</rights><rights>2018 Ong et al. 2018 Ong et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-6dfbe45e5af7fcd1c678d4783b7e56a0042606280e6a1dd731d25b16b47e3e2b3</citedby><cites>FETCH-LOGICAL-c447t-6dfbe45e5af7fcd1c678d4783b7e56a0042606280e6a1dd731d25b16b47e3e2b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6066309/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925820317841$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29899115$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ong, Shee Chee</creatorcontrib><creatorcontrib>Belgi, Alessia</creatorcontrib><creatorcontrib>van Lierop, Bianca</creatorcontrib><creatorcontrib>Delaine, Carlie</creatorcontrib><creatorcontrib>Andrikopoulos, Sofianos</creatorcontrib><creatorcontrib>MacRaild, Christopher A.</creatorcontrib><creatorcontrib>Norton, Raymond S.</creatorcontrib><creatorcontrib>Haworth, Naomi L.</creatorcontrib><creatorcontrib>Robinson, Andrea J.</creatorcontrib><creatorcontrib>Forbes, Briony E.</creatorcontrib><title>Probing the correlation between insulin activity and structural stability through introduction of the rigid A6–A11 bond</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The development of fast-acting and highly stable insulin analogues is challenging. Insulin undergoes structural transitions essential for binding and activation of the insulin receptor (IR), but these conformational changes can also affect insulin stability. Previously, we substituted the insulin A6–A11 cystine with a rigid, non-reducible C=C linkage (“dicarba” linkage). A cis-alkene permitted the conformational flexibility of the A-chain N-terminal helix necessary for high-affinity IR binding, resulting in surprisingly rapid activity in vivo. Here, we show that, unlike the rapidly acting LysB28ProB29 insulin analogue (KP insulin), cis-dicarba insulin is not inherently monomeric. We also show that cis-dicarba KP insulin lowers blood glucose levels even more rapidly than KP insulin, suggesting that an inability to oligomerize is not responsible for the observed rapid activity onset of cis-dicarba analogues. Although rapid-acting, neither dicarba species is stable, as assessed by fibrillation and thermodynamics assays. MALDI analyses and molecular dynamics simulations of cis-dicarba insulin revealed a previously unidentified role of the A6–A11 linkage in insulin conformational dynamics. By controlling the conformational flexibility of the insulin B-chain helix, this linkage affects overall insulin structural stability. This effect is independent of its regulation of the A-chain N-terminal helix flexibility necessary for IR engagement. We conclude that high-affinity IR binding, rapid in vivo activity, and insulin stability can be regulated by the specific conformational arrangement of the A6–A11 linkage. This detailed understanding of insulin's structural dynamics may aid in the future design of rapid-acting insulin analogues with improved stability.</description><subject>Animals</subject><subject>biophysical studies</subject><subject>biophysics</subject><subject>Blood Glucose - metabolism</subject><subject>Cell Line</subject><subject>conformational change</subject><subject>Crystallography, X-Ray</subject><subject>Cysteine - chemistry</subject><subject>Cysteine - pharmacology</subject><subject>dicarba peptides</subject><subject>disulfide</subject><subject>disulfide bonds</subject><subject>Humans</subject><subject>Hypoglycemic Agents - chemistry</subject><subject>Hypoglycemic Agents - pharmacology</subject><subject>insulin</subject><subject>Insulin - analogs &amp; derivatives</subject><subject>Insulin - pharmacology</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Molecular Biophysics</subject><subject>molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>NIH 3T3 Cells</subject><subject>Protein Conformation</subject><subject>Protein Stability</subject><subject>Receptor, Insulin - metabolism</subject><subject>Thermodynamics</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kctKAzEUhoMotl72riQvMDWZS2bGhVDEGxQUUXAXcjnTRqaJZDKV7nwH39AnMW1VdGE2CfnP_-Wc_AgdUTKipMxPnqUa3Y8prUaEpHnFttCQkipLsoI-baNhvKRJnRbVAO113TOJK6_pLhqkdVXXlBZDtLzzTho7xWEGWDnvoRXBOIslhFcAi43t-tZYLFQwCxOWWFiNu-B7FXov2ngU0rQrIcy866ez6Aje6aivMK5Zk72ZGo3H7OPtPbaLpbP6AO00ou3g8GvfR4-XFw_n18nk9urmfDxJVJ6XIWG6kZAXUIimbJSmipWVzssqkyUUTMSJUkZYWhFggmpdZlSnhaRM5iVkkMpsH51tuC-9nINWENsTLX_xZi78kjth-F_FmhmfugWPWJaROgLIBqC86zoPzY-XEr6KgccY-DoGvokhWo5_v_lj-P73WHC6KYA4-cKA550yYBVo40EFrp35n_4J7zWcZQ</recordid><startdate>20180727</startdate><enddate>20180727</enddate><creator>Ong, Shee Chee</creator><creator>Belgi, Alessia</creator><creator>van Lierop, Bianca</creator><creator>Delaine, Carlie</creator><creator>Andrikopoulos, Sofianos</creator><creator>MacRaild, Christopher A.</creator><creator>Norton, Raymond S.</creator><creator>Haworth, Naomi L.</creator><creator>Robinson, Andrea J.</creator><creator>Forbes, Briony E.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20180727</creationdate><title>Probing the correlation between insulin activity and structural stability through introduction of the rigid A6–A11 bond</title><author>Ong, Shee Chee ; Belgi, Alessia ; van Lierop, Bianca ; Delaine, Carlie ; Andrikopoulos, Sofianos ; MacRaild, Christopher A. ; Norton, Raymond S. ; Haworth, Naomi L. ; Robinson, Andrea J. ; Forbes, Briony E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-6dfbe45e5af7fcd1c678d4783b7e56a0042606280e6a1dd731d25b16b47e3e2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>biophysical studies</topic><topic>biophysics</topic><topic>Blood Glucose - metabolism</topic><topic>Cell Line</topic><topic>conformational change</topic><topic>Crystallography, X-Ray</topic><topic>Cysteine - chemistry</topic><topic>Cysteine - pharmacology</topic><topic>dicarba peptides</topic><topic>disulfide</topic><topic>disulfide bonds</topic><topic>Humans</topic><topic>Hypoglycemic Agents - chemistry</topic><topic>Hypoglycemic Agents - pharmacology</topic><topic>insulin</topic><topic>Insulin - analogs &amp; derivatives</topic><topic>Insulin - pharmacology</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Molecular Biophysics</topic><topic>molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>NIH 3T3 Cells</topic><topic>Protein Conformation</topic><topic>Protein Stability</topic><topic>Receptor, Insulin - metabolism</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ong, Shee Chee</creatorcontrib><creatorcontrib>Belgi, Alessia</creatorcontrib><creatorcontrib>van Lierop, Bianca</creatorcontrib><creatorcontrib>Delaine, Carlie</creatorcontrib><creatorcontrib>Andrikopoulos, Sofianos</creatorcontrib><creatorcontrib>MacRaild, Christopher A.</creatorcontrib><creatorcontrib>Norton, Raymond S.</creatorcontrib><creatorcontrib>Haworth, Naomi L.</creatorcontrib><creatorcontrib>Robinson, Andrea J.</creatorcontrib><creatorcontrib>Forbes, Briony E.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ong, Shee Chee</au><au>Belgi, Alessia</au><au>van Lierop, Bianca</au><au>Delaine, Carlie</au><au>Andrikopoulos, Sofianos</au><au>MacRaild, Christopher A.</au><au>Norton, Raymond S.</au><au>Haworth, Naomi L.</au><au>Robinson, Andrea J.</au><au>Forbes, Briony E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing the correlation between insulin activity and structural stability through introduction of the rigid A6–A11 bond</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2018-07-27</date><risdate>2018</risdate><volume>293</volume><issue>30</issue><spage>11928</spage><epage>11943</epage><pages>11928-11943</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The development of fast-acting and highly stable insulin analogues is challenging. Insulin undergoes structural transitions essential for binding and activation of the insulin receptor (IR), but these conformational changes can also affect insulin stability. Previously, we substituted the insulin A6–A11 cystine with a rigid, non-reducible C=C linkage (“dicarba” linkage). A cis-alkene permitted the conformational flexibility of the A-chain N-terminal helix necessary for high-affinity IR binding, resulting in surprisingly rapid activity in vivo. Here, we show that, unlike the rapidly acting LysB28ProB29 insulin analogue (KP insulin), cis-dicarba insulin is not inherently monomeric. We also show that cis-dicarba KP insulin lowers blood glucose levels even more rapidly than KP insulin, suggesting that an inability to oligomerize is not responsible for the observed rapid activity onset of cis-dicarba analogues. Although rapid-acting, neither dicarba species is stable, as assessed by fibrillation and thermodynamics assays. MALDI analyses and molecular dynamics simulations of cis-dicarba insulin revealed a previously unidentified role of the A6–A11 linkage in insulin conformational dynamics. By controlling the conformational flexibility of the insulin B-chain helix, this linkage affects overall insulin structural stability. This effect is independent of its regulation of the A-chain N-terminal helix flexibility necessary for IR engagement. We conclude that high-affinity IR binding, rapid in vivo activity, and insulin stability can be regulated by the specific conformational arrangement of the A6–A11 linkage. This detailed understanding of insulin's structural dynamics may aid in the future design of rapid-acting insulin analogues with improved stability.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>29899115</pmid><doi>10.1074/jbc.RA118.002486</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2018-07, Vol.293 (30), p.11928-11943
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6066309
source Open Access: PubMed Central; ScienceDirect Journals
subjects Animals
biophysical studies
biophysics
Blood Glucose - metabolism
Cell Line
conformational change
Crystallography, X-Ray
Cysteine - chemistry
Cysteine - pharmacology
dicarba peptides
disulfide
disulfide bonds
Humans
Hypoglycemic Agents - chemistry
Hypoglycemic Agents - pharmacology
insulin
Insulin - analogs & derivatives
Insulin - pharmacology
Male
Mice
Mice, Inbred C57BL
Molecular Biophysics
molecular dynamics
Molecular Dynamics Simulation
NIH 3T3 Cells
Protein Conformation
Protein Stability
Receptor, Insulin - metabolism
Thermodynamics
title Probing the correlation between insulin activity and structural stability through introduction of the rigid A6–A11 bond
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A41%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20the%20correlation%20between%20insulin%20activity%20and%20structural%20stability%20through%20introduction%20of%20the%20rigid%20A6%E2%80%93A11%20bond&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Ong,%20Shee%20Chee&rft.date=2018-07-27&rft.volume=293&rft.issue=30&rft.spage=11928&rft.epage=11943&rft.pages=11928-11943&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.RA118.002486&rft_dat=%3Cpubmed_cross%3E29899115%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c447t-6dfbe45e5af7fcd1c678d4783b7e56a0042606280e6a1dd731d25b16b47e3e2b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/29899115&rfr_iscdi=true