Loading…

Gene expression profiling of primary human type I alveolar epithelial cells exposed to Bacillus anthracis spores reveals induction of neutrophil and monocyte chemokines

The lung is the entry site for Bacillus anthracis in inhalation anthrax, the most deadly form of the disease. Spores must escape through the alveolar epithelial cell (AEC) barrier and migrate to regional lymph nodes, germinate and enter the circulatory system to cause disease. Several mechanisms to...

Full description

Saved in:
Bibliographic Details
Published in:Microbial pathogenesis 2018-08, Vol.121, p.9-21
Main Authors: Booth, J. Leland, Duggan, Elizabeth S., Patel, Vineet I., Wu, Wenxin, Burian, Dennis M., Hutchings, David C., White, Vicky L., Coggeshall, K. Mark, Dozmorov, Mikhail G., Metcalf, Jordan P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c467t-9c159e9fa9d9bb39f196b8e02c931c078b7283d3e471281f6924af7d4c27b7ff3
cites cdi_FETCH-LOGICAL-c467t-9c159e9fa9d9bb39f196b8e02c931c078b7283d3e471281f6924af7d4c27b7ff3
container_end_page 21
container_issue
container_start_page 9
container_title Microbial pathogenesis
container_volume 121
creator Booth, J. Leland
Duggan, Elizabeth S.
Patel, Vineet I.
Wu, Wenxin
Burian, Dennis M.
Hutchings, David C.
White, Vicky L.
Coggeshall, K. Mark
Dozmorov, Mikhail G.
Metcalf, Jordan P.
description The lung is the entry site for Bacillus anthracis in inhalation anthrax, the most deadly form of the disease. Spores must escape through the alveolar epithelial cell (AEC) barrier and migrate to regional lymph nodes, germinate and enter the circulatory system to cause disease. Several mechanisms to explain alveolar escape have been postulated, and all these tacitly involve the AEC barrier. In this study, we incorporate our primary human type I AEC model, microarray and gene enrichment analysis, qRT-PCR, multiplex ELISA, and neutrophil and monocyte chemotaxis assays to study the response of AEC to B. anthracis, (Sterne) spores at 4 and 24 h post-exposure. Spore exposure altered gene expression in AEC after 4 and 24 h and differentially expressed genes (±1.3 fold, p ≤ 0.05) included CCL4/MIP-1β (4 h), CXCL8/IL-8 (4 and 24 h) and CXCL5/ENA-78 (24 h). Gene enrichment analysis revealed that pathways involving cytokine or chemokine activity, receptor binding, and innate immune responses to infection were prominent. Microarray results were confirmed by qRT-PCR and multiplex ELISA assays. Chemotaxis assays demonstrated that spores induced the release of biologically active neutrophil and monocyte chemokines, and that CXCL8/IL-8 was the major neutrophil chemokine. The small or sub-chemotactic doses of CXCL5/ENA-78, CXCL2/GROβ and CCL20/MIP-3α may contribute to chemotaxis by priming effects. These data provide the first whole transcriptomic description of the human type I AEC initial response to B. anthracis spore exposure. Taken together, our findings contribute to an increased understanding of the role of AEC in the pathogenesis of inhalational anthrax. •Human type I alveolar epithelial cells exposed to Bacillus anthracis, Sterne spores display altered gene expression.•Genes for the chemokines CCL4/MIP-1β, CXCL8/IL-8, and CXCL5/ENA-78 are among the most highly upregulated DEGs.•Pathways involving cytokine or chemokine activity, receptor binding, and innate immune response to infection are prominent.•Spores induce release of neutrophil and monocyte chemokines from AEC I, and CXCL8/IL-8 is the major neutrophil chemokine.•Our results provide the first transcriptomic description of the initial response of AEC I to B. anthracis spore exposure.
doi_str_mv 10.1016/j.micpath.2018.04.039
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6077097</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S088240101731135X</els_id><sourcerecordid>2032457991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-9c159e9fa9d9bb39f196b8e02c931c078b7283d3e471281f6924af7d4c27b7ff3</originalsourceid><addsrcrecordid>eNqFUU1v1DAQjRCIbgs_AeQjl4Sxk43jCwgqaCtV4gJny3EmjRfHDrazYv8RPxOvdqngxGk0mvcxeq8oXlGoKND27a6ajV5UmioGtKugqaAWT4oNBdGWlEH3tNhA17GyAQoXxWWMOwAQTS2eFxdMcGjalm-KXzfokODPJWCMxjuyBD8aa9wD8WNezKzCgUzrrBxJhwXJHVF2j96qQHAxaUJrlCUarY1HGR9xIMmTj0oba9dIlEtTyEskcfHZhATco8pg44ZVp6NlNnK4puCXydhMGMjsndeHhERPOPvvxmF8UTwbMw1fnudV8e3zp6_Xt-X9l5u76w_3pW5ankqh6VagGJUYRN_XYqSi7TsEpkVNNfCu56yrhxobTllHx1awRo18aDTjPR_H-qp4d9Jd1n7GQaNLQVl5TkJ6ZeS_F2cm-eD3sgXOQfAs8OYsEPyPFWOSs4nHfJRDv0bJoGbNlgtBM3R7gurgYww4PtpQkMeW5U6eW5bHliU0Mrecea___vGR9afWDHh_AmBOam8wyKgNOo2DCaiTHLz5j8Vv8QPCHQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2032457991</pqid></control><display><type>article</type><title>Gene expression profiling of primary human type I alveolar epithelial cells exposed to Bacillus anthracis spores reveals induction of neutrophil and monocyte chemokines</title><source>ScienceDirect Journals</source><creator>Booth, J. Leland ; Duggan, Elizabeth S. ; Patel, Vineet I. ; Wu, Wenxin ; Burian, Dennis M. ; Hutchings, David C. ; White, Vicky L. ; Coggeshall, K. Mark ; Dozmorov, Mikhail G. ; Metcalf, Jordan P.</creator><creatorcontrib>Booth, J. Leland ; Duggan, Elizabeth S. ; Patel, Vineet I. ; Wu, Wenxin ; Burian, Dennis M. ; Hutchings, David C. ; White, Vicky L. ; Coggeshall, K. Mark ; Dozmorov, Mikhail G. ; Metcalf, Jordan P.</creatorcontrib><description>The lung is the entry site for Bacillus anthracis in inhalation anthrax, the most deadly form of the disease. Spores must escape through the alveolar epithelial cell (AEC) barrier and migrate to regional lymph nodes, germinate and enter the circulatory system to cause disease. Several mechanisms to explain alveolar escape have been postulated, and all these tacitly involve the AEC barrier. In this study, we incorporate our primary human type I AEC model, microarray and gene enrichment analysis, qRT-PCR, multiplex ELISA, and neutrophil and monocyte chemotaxis assays to study the response of AEC to B. anthracis, (Sterne) spores at 4 and 24 h post-exposure. Spore exposure altered gene expression in AEC after 4 and 24 h and differentially expressed genes (±1.3 fold, p ≤ 0.05) included CCL4/MIP-1β (4 h), CXCL8/IL-8 (4 and 24 h) and CXCL5/ENA-78 (24 h). Gene enrichment analysis revealed that pathways involving cytokine or chemokine activity, receptor binding, and innate immune responses to infection were prominent. Microarray results were confirmed by qRT-PCR and multiplex ELISA assays. Chemotaxis assays demonstrated that spores induced the release of biologically active neutrophil and monocyte chemokines, and that CXCL8/IL-8 was the major neutrophil chemokine. The small or sub-chemotactic doses of CXCL5/ENA-78, CXCL2/GROβ and CCL20/MIP-3α may contribute to chemotaxis by priming effects. These data provide the first whole transcriptomic description of the human type I AEC initial response to B. anthracis spore exposure. Taken together, our findings contribute to an increased understanding of the role of AEC in the pathogenesis of inhalational anthrax. •Human type I alveolar epithelial cells exposed to Bacillus anthracis, Sterne spores display altered gene expression.•Genes for the chemokines CCL4/MIP-1β, CXCL8/IL-8, and CXCL5/ENA-78 are among the most highly upregulated DEGs.•Pathways involving cytokine or chemokine activity, receptor binding, and innate immune response to infection are prominent.•Spores induce release of neutrophil and monocyte chemokines from AEC I, and CXCL8/IL-8 is the major neutrophil chemokine.•Our results provide the first transcriptomic description of the initial response of AEC I to B. anthracis spore exposure.</description><identifier>ISSN: 0882-4010</identifier><identifier>EISSN: 1096-1208</identifier><identifier>DOI: 10.1016/j.micpath.2018.04.039</identifier><identifier>PMID: 29704667</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Alveolar Epithelial Cells - microbiology ; Anthrax ; Anthrax - genetics ; Anthrax - metabolism ; Bacillus anthracis ; Bacillus anthracis - pathogenicity ; Chemokine CCL20 - genetics ; Chemokine CCL20 - metabolism ; Chemokine CXCL5 - genetics ; Chemokine CXCL5 - metabolism ; Chemokines - genetics ; Chemokines - metabolism ; Chemotaxis ; Gene Expression Profiling ; Humans ; Interleukin-8 - genetics ; Interleukin-8 - metabolism ; Monocytes - metabolism ; Monocytes - microbiology ; Neutrophils - metabolism ; Neutrophils - microbiology ; Platelet Factor 4 - genetics ; Platelet Factor 4 - metabolism ; Respiratory Tract Infections - genetics ; Respiratory Tract Infections - metabolism ; Spores, Bacterial - pathogenicity ; Transcriptome microarray analysis ; Type I alveolar epithelial cells ; Up-Regulation</subject><ispartof>Microbial pathogenesis, 2018-08, Vol.121, p.9-21</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright © 2018 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-9c159e9fa9d9bb39f196b8e02c931c078b7283d3e471281f6924af7d4c27b7ff3</citedby><cites>FETCH-LOGICAL-c467t-9c159e9fa9d9bb39f196b8e02c931c078b7283d3e471281f6924af7d4c27b7ff3</cites><orcidid>0000-0002-2664-4360</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29704667$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Booth, J. Leland</creatorcontrib><creatorcontrib>Duggan, Elizabeth S.</creatorcontrib><creatorcontrib>Patel, Vineet I.</creatorcontrib><creatorcontrib>Wu, Wenxin</creatorcontrib><creatorcontrib>Burian, Dennis M.</creatorcontrib><creatorcontrib>Hutchings, David C.</creatorcontrib><creatorcontrib>White, Vicky L.</creatorcontrib><creatorcontrib>Coggeshall, K. Mark</creatorcontrib><creatorcontrib>Dozmorov, Mikhail G.</creatorcontrib><creatorcontrib>Metcalf, Jordan P.</creatorcontrib><title>Gene expression profiling of primary human type I alveolar epithelial cells exposed to Bacillus anthracis spores reveals induction of neutrophil and monocyte chemokines</title><title>Microbial pathogenesis</title><addtitle>Microb Pathog</addtitle><description>The lung is the entry site for Bacillus anthracis in inhalation anthrax, the most deadly form of the disease. Spores must escape through the alveolar epithelial cell (AEC) barrier and migrate to regional lymph nodes, germinate and enter the circulatory system to cause disease. Several mechanisms to explain alveolar escape have been postulated, and all these tacitly involve the AEC barrier. In this study, we incorporate our primary human type I AEC model, microarray and gene enrichment analysis, qRT-PCR, multiplex ELISA, and neutrophil and monocyte chemotaxis assays to study the response of AEC to B. anthracis, (Sterne) spores at 4 and 24 h post-exposure. Spore exposure altered gene expression in AEC after 4 and 24 h and differentially expressed genes (±1.3 fold, p ≤ 0.05) included CCL4/MIP-1β (4 h), CXCL8/IL-8 (4 and 24 h) and CXCL5/ENA-78 (24 h). Gene enrichment analysis revealed that pathways involving cytokine or chemokine activity, receptor binding, and innate immune responses to infection were prominent. Microarray results were confirmed by qRT-PCR and multiplex ELISA assays. Chemotaxis assays demonstrated that spores induced the release of biologically active neutrophil and monocyte chemokines, and that CXCL8/IL-8 was the major neutrophil chemokine. The small or sub-chemotactic doses of CXCL5/ENA-78, CXCL2/GROβ and CCL20/MIP-3α may contribute to chemotaxis by priming effects. These data provide the first whole transcriptomic description of the human type I AEC initial response to B. anthracis spore exposure. Taken together, our findings contribute to an increased understanding of the role of AEC in the pathogenesis of inhalational anthrax. •Human type I alveolar epithelial cells exposed to Bacillus anthracis, Sterne spores display altered gene expression.•Genes for the chemokines CCL4/MIP-1β, CXCL8/IL-8, and CXCL5/ENA-78 are among the most highly upregulated DEGs.•Pathways involving cytokine or chemokine activity, receptor binding, and innate immune response to infection are prominent.•Spores induce release of neutrophil and monocyte chemokines from AEC I, and CXCL8/IL-8 is the major neutrophil chemokine.•Our results provide the first transcriptomic description of the initial response of AEC I to B. anthracis spore exposure.</description><subject>Alveolar Epithelial Cells - microbiology</subject><subject>Anthrax</subject><subject>Anthrax - genetics</subject><subject>Anthrax - metabolism</subject><subject>Bacillus anthracis</subject><subject>Bacillus anthracis - pathogenicity</subject><subject>Chemokine CCL20 - genetics</subject><subject>Chemokine CCL20 - metabolism</subject><subject>Chemokine CXCL5 - genetics</subject><subject>Chemokine CXCL5 - metabolism</subject><subject>Chemokines - genetics</subject><subject>Chemokines - metabolism</subject><subject>Chemotaxis</subject><subject>Gene Expression Profiling</subject><subject>Humans</subject><subject>Interleukin-8 - genetics</subject><subject>Interleukin-8 - metabolism</subject><subject>Monocytes - metabolism</subject><subject>Monocytes - microbiology</subject><subject>Neutrophils - metabolism</subject><subject>Neutrophils - microbiology</subject><subject>Platelet Factor 4 - genetics</subject><subject>Platelet Factor 4 - metabolism</subject><subject>Respiratory Tract Infections - genetics</subject><subject>Respiratory Tract Infections - metabolism</subject><subject>Spores, Bacterial - pathogenicity</subject><subject>Transcriptome microarray analysis</subject><subject>Type I alveolar epithelial cells</subject><subject>Up-Regulation</subject><issn>0882-4010</issn><issn>1096-1208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFUU1v1DAQjRCIbgs_AeQjl4Sxk43jCwgqaCtV4gJny3EmjRfHDrazYv8RPxOvdqngxGk0mvcxeq8oXlGoKND27a6ajV5UmioGtKugqaAWT4oNBdGWlEH3tNhA17GyAQoXxWWMOwAQTS2eFxdMcGjalm-KXzfokODPJWCMxjuyBD8aa9wD8WNezKzCgUzrrBxJhwXJHVF2j96qQHAxaUJrlCUarY1HGR9xIMmTj0oba9dIlEtTyEskcfHZhATco8pg44ZVp6NlNnK4puCXydhMGMjsndeHhERPOPvvxmF8UTwbMw1fnudV8e3zp6_Xt-X9l5u76w_3pW5ankqh6VagGJUYRN_XYqSi7TsEpkVNNfCu56yrhxobTllHx1awRo18aDTjPR_H-qp4d9Jd1n7GQaNLQVl5TkJ6ZeS_F2cm-eD3sgXOQfAs8OYsEPyPFWOSs4nHfJRDv0bJoGbNlgtBM3R7gurgYww4PtpQkMeW5U6eW5bHliU0Mrecea___vGR9afWDHh_AmBOam8wyKgNOo2DCaiTHLz5j8Vv8QPCHQ</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Booth, J. Leland</creator><creator>Duggan, Elizabeth S.</creator><creator>Patel, Vineet I.</creator><creator>Wu, Wenxin</creator><creator>Burian, Dennis M.</creator><creator>Hutchings, David C.</creator><creator>White, Vicky L.</creator><creator>Coggeshall, K. Mark</creator><creator>Dozmorov, Mikhail G.</creator><creator>Metcalf, Jordan P.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2664-4360</orcidid></search><sort><creationdate>20180801</creationdate><title>Gene expression profiling of primary human type I alveolar epithelial cells exposed to Bacillus anthracis spores reveals induction of neutrophil and monocyte chemokines</title><author>Booth, J. Leland ; Duggan, Elizabeth S. ; Patel, Vineet I. ; Wu, Wenxin ; Burian, Dennis M. ; Hutchings, David C. ; White, Vicky L. ; Coggeshall, K. Mark ; Dozmorov, Mikhail G. ; Metcalf, Jordan P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-9c159e9fa9d9bb39f196b8e02c931c078b7283d3e471281f6924af7d4c27b7ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alveolar Epithelial Cells - microbiology</topic><topic>Anthrax</topic><topic>Anthrax - genetics</topic><topic>Anthrax - metabolism</topic><topic>Bacillus anthracis</topic><topic>Bacillus anthracis - pathogenicity</topic><topic>Chemokine CCL20 - genetics</topic><topic>Chemokine CCL20 - metabolism</topic><topic>Chemokine CXCL5 - genetics</topic><topic>Chemokine CXCL5 - metabolism</topic><topic>Chemokines - genetics</topic><topic>Chemokines - metabolism</topic><topic>Chemotaxis</topic><topic>Gene Expression Profiling</topic><topic>Humans</topic><topic>Interleukin-8 - genetics</topic><topic>Interleukin-8 - metabolism</topic><topic>Monocytes - metabolism</topic><topic>Monocytes - microbiology</topic><topic>Neutrophils - metabolism</topic><topic>Neutrophils - microbiology</topic><topic>Platelet Factor 4 - genetics</topic><topic>Platelet Factor 4 - metabolism</topic><topic>Respiratory Tract Infections - genetics</topic><topic>Respiratory Tract Infections - metabolism</topic><topic>Spores, Bacterial - pathogenicity</topic><topic>Transcriptome microarray analysis</topic><topic>Type I alveolar epithelial cells</topic><topic>Up-Regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Booth, J. Leland</creatorcontrib><creatorcontrib>Duggan, Elizabeth S.</creatorcontrib><creatorcontrib>Patel, Vineet I.</creatorcontrib><creatorcontrib>Wu, Wenxin</creatorcontrib><creatorcontrib>Burian, Dennis M.</creatorcontrib><creatorcontrib>Hutchings, David C.</creatorcontrib><creatorcontrib>White, Vicky L.</creatorcontrib><creatorcontrib>Coggeshall, K. Mark</creatorcontrib><creatorcontrib>Dozmorov, Mikhail G.</creatorcontrib><creatorcontrib>Metcalf, Jordan P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Microbial pathogenesis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Booth, J. Leland</au><au>Duggan, Elizabeth S.</au><au>Patel, Vineet I.</au><au>Wu, Wenxin</au><au>Burian, Dennis M.</au><au>Hutchings, David C.</au><au>White, Vicky L.</au><au>Coggeshall, K. Mark</au><au>Dozmorov, Mikhail G.</au><au>Metcalf, Jordan P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gene expression profiling of primary human type I alveolar epithelial cells exposed to Bacillus anthracis spores reveals induction of neutrophil and monocyte chemokines</atitle><jtitle>Microbial pathogenesis</jtitle><addtitle>Microb Pathog</addtitle><date>2018-08-01</date><risdate>2018</risdate><volume>121</volume><spage>9</spage><epage>21</epage><pages>9-21</pages><issn>0882-4010</issn><eissn>1096-1208</eissn><abstract>The lung is the entry site for Bacillus anthracis in inhalation anthrax, the most deadly form of the disease. Spores must escape through the alveolar epithelial cell (AEC) barrier and migrate to regional lymph nodes, germinate and enter the circulatory system to cause disease. Several mechanisms to explain alveolar escape have been postulated, and all these tacitly involve the AEC barrier. In this study, we incorporate our primary human type I AEC model, microarray and gene enrichment analysis, qRT-PCR, multiplex ELISA, and neutrophil and monocyte chemotaxis assays to study the response of AEC to B. anthracis, (Sterne) spores at 4 and 24 h post-exposure. Spore exposure altered gene expression in AEC after 4 and 24 h and differentially expressed genes (±1.3 fold, p ≤ 0.05) included CCL4/MIP-1β (4 h), CXCL8/IL-8 (4 and 24 h) and CXCL5/ENA-78 (24 h). Gene enrichment analysis revealed that pathways involving cytokine or chemokine activity, receptor binding, and innate immune responses to infection were prominent. Microarray results were confirmed by qRT-PCR and multiplex ELISA assays. Chemotaxis assays demonstrated that spores induced the release of biologically active neutrophil and monocyte chemokines, and that CXCL8/IL-8 was the major neutrophil chemokine. The small or sub-chemotactic doses of CXCL5/ENA-78, CXCL2/GROβ and CCL20/MIP-3α may contribute to chemotaxis by priming effects. These data provide the first whole transcriptomic description of the human type I AEC initial response to B. anthracis spore exposure. Taken together, our findings contribute to an increased understanding of the role of AEC in the pathogenesis of inhalational anthrax. •Human type I alveolar epithelial cells exposed to Bacillus anthracis, Sterne spores display altered gene expression.•Genes for the chemokines CCL4/MIP-1β, CXCL8/IL-8, and CXCL5/ENA-78 are among the most highly upregulated DEGs.•Pathways involving cytokine or chemokine activity, receptor binding, and innate immune response to infection are prominent.•Spores induce release of neutrophil and monocyte chemokines from AEC I, and CXCL8/IL-8 is the major neutrophil chemokine.•Our results provide the first transcriptomic description of the initial response of AEC I to B. anthracis spore exposure.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>29704667</pmid><doi>10.1016/j.micpath.2018.04.039</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2664-4360</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0882-4010
ispartof Microbial pathogenesis, 2018-08, Vol.121, p.9-21
issn 0882-4010
1096-1208
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6077097
source ScienceDirect Journals
subjects Alveolar Epithelial Cells - microbiology
Anthrax
Anthrax - genetics
Anthrax - metabolism
Bacillus anthracis
Bacillus anthracis - pathogenicity
Chemokine CCL20 - genetics
Chemokine CCL20 - metabolism
Chemokine CXCL5 - genetics
Chemokine CXCL5 - metabolism
Chemokines - genetics
Chemokines - metabolism
Chemotaxis
Gene Expression Profiling
Humans
Interleukin-8 - genetics
Interleukin-8 - metabolism
Monocytes - metabolism
Monocytes - microbiology
Neutrophils - metabolism
Neutrophils - microbiology
Platelet Factor 4 - genetics
Platelet Factor 4 - metabolism
Respiratory Tract Infections - genetics
Respiratory Tract Infections - metabolism
Spores, Bacterial - pathogenicity
Transcriptome microarray analysis
Type I alveolar epithelial cells
Up-Regulation
title Gene expression profiling of primary human type I alveolar epithelial cells exposed to Bacillus anthracis spores reveals induction of neutrophil and monocyte chemokines
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A02%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gene%20expression%20profiling%20of%20primary%20human%20type%20I%20alveolar%20epithelial%20cells%20exposed%20to%20Bacillus%20anthracis%20spores%20reveals%20induction%20of%20neutrophil%20and%20monocyte%20chemokines&rft.jtitle=Microbial%20pathogenesis&rft.au=Booth,%20J.%20Leland&rft.date=2018-08-01&rft.volume=121&rft.spage=9&rft.epage=21&rft.pages=9-21&rft.issn=0882-4010&rft.eissn=1096-1208&rft_id=info:doi/10.1016/j.micpath.2018.04.039&rft_dat=%3Cproquest_pubme%3E2032457991%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c467t-9c159e9fa9d9bb39f196b8e02c931c078b7283d3e471281f6924af7d4c27b7ff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2032457991&rft_id=info:pmid/29704667&rfr_iscdi=true