Loading…

Target of rapamycin complex 2–dependent phosphorylation of the coat protein Pan1 by Akl1 controls endocytosis dynamics in Saccharomyces cerevisiae

Target of rapamycin complex 2 (TORC2) is a widely conserved serine/threonine protein kinase. In the yeast Saccharomyces cerevisiae, TORC2 is essential, playing a key role in plasma membrane homeostasis. In this role, TORC2 regulates diverse processes, including sphingolipid synthesis, glycerol produ...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2018-08, Vol.293 (31), p.12043-12053
Main Authors: Bourgoint, Clélia, Rispal, Delphine, Berti, Marina, Filipuzzi, Ireos, Helliwell, Stephen B., Prouteau, Manoël, Loewith, Robbie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c513t-f0fbf42149d856d3d760e1df674701d323a801656ffbbac924419e308443c10f3
cites cdi_FETCH-LOGICAL-c513t-f0fbf42149d856d3d760e1df674701d323a801656ffbbac924419e308443c10f3
container_end_page 12053
container_issue 31
container_start_page 12043
container_title The Journal of biological chemistry
container_volume 293
creator Bourgoint, Clélia
Rispal, Delphine
Berti, Marina
Filipuzzi, Ireos
Helliwell, Stephen B.
Prouteau, Manoël
Loewith, Robbie
description Target of rapamycin complex 2 (TORC2) is a widely conserved serine/threonine protein kinase. In the yeast Saccharomyces cerevisiae, TORC2 is essential, playing a key role in plasma membrane homeostasis. In this role, TORC2 regulates diverse processes, including sphingolipid synthesis, glycerol production and efflux, polarization of the actin cytoskeleton, and endocytosis. The major direct substrate of TORC2 is the AGC-family kinase Ypk1. Ypk1 connects TORC2 signaling to actin polarization and to endocytosis via the flippase kinases Fpk1 and Fpk2. Here, we report that Fpk1 mediates TORC2 signaling to control actin polarization, but not endocytosis, via aminophospholipid flippases. To search for specific targets of these flippase kinases, we exploited the fact that Fpk1 prefers to phosphorylate Ser residues within the sequence RXS(L/Y)(D/E), which is present ∼90 times in the yeast proteome. We observed that 25 of these sequences are phosphorylated by Fpk1 in vitro. We focused on one sequence hit, the Ark/Prk-family kinase Akl1, as this kinase previously has been implicated in endocytosis. Using a potent ATP-competitive small molecule, CMB4563, to preferentially inhibit TORC2, we found that Fpk1-mediated Akl1 phosphorylation inhibits Akl1 activity, which, in turn, reduces phosphorylation of Pan1 and of other endocytic coat proteins and ultimately contributes to a slowing of endocytosis kinetics. These results indicate that the regulation of actin polarization and endocytosis downstream of TORC2 is signaled through separate pathways that bifurcate at the level of the flippase kinases.
doi_str_mv 10.1074/jbc.RA117.001615
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6078453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820313909</els_id><sourcerecordid>2054954148</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-f0fbf42149d856d3d760e1df674701d323a801656ffbbac924419e308443c10f3</originalsourceid><addsrcrecordid>eNp1kc9uFSEUxonR2Gt178qwdDNXGGD-uDC5aWo1aaLRmrgjDBx6qTMwAvfG2fUd9Al9Eqm3NrqQhLA4v-87h_Mh9JSSNSUtf3E16PWHDaXtmhDaUHEPrSjpWMUE_XwfrQipadXXojtCj1K6IuXwnj5ER3Xf9aKpyQr9uFDxEjIOFkc1q2nRzmMdpnmEb7j-ef3dwAzegM943oZUblxGlV3wN5K8hQKrUoshQ1G-V57iYcGbLyMtFZ9jGBMuBkEvOSSXsFm8mpxOuNAfldZbFUPpCglriLB3ySl4jB5YNSZ4cvseo0-vTy9O3lTn787enmzOKy0oy5UldrC8prw3nWgMM21DgBrbtLwl1LCaqa6sRTTWDoPSfc057YGRjnOmKbHsGL06-M67YQKjyy-jGuUc3aTiIoNy8t-Kd1t5GfayIW3HBSsGz28NYvi6g5Tl5JKGcVQewi7JmgjeC055V1ByQHUMKUWwd20okTdhyhKm_B2mPIRZJM_-Hu9O8Ce9Arw8AFCWtHcQZdIOvAbjIugsTXD_d_8F_ECzhw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2054954148</pqid></control><display><type>article</type><title>Target of rapamycin complex 2–dependent phosphorylation of the coat protein Pan1 by Akl1 controls endocytosis dynamics in Saccharomyces cerevisiae</title><source>Open Access: PubMed Central</source><source>ScienceDirect®</source><creator>Bourgoint, Clélia ; Rispal, Delphine ; Berti, Marina ; Filipuzzi, Ireos ; Helliwell, Stephen B. ; Prouteau, Manoël ; Loewith, Robbie</creator><creatorcontrib>Bourgoint, Clélia ; Rispal, Delphine ; Berti, Marina ; Filipuzzi, Ireos ; Helliwell, Stephen B. ; Prouteau, Manoël ; Loewith, Robbie</creatorcontrib><description>Target of rapamycin complex 2 (TORC2) is a widely conserved serine/threonine protein kinase. In the yeast Saccharomyces cerevisiae, TORC2 is essential, playing a key role in plasma membrane homeostasis. In this role, TORC2 regulates diverse processes, including sphingolipid synthesis, glycerol production and efflux, polarization of the actin cytoskeleton, and endocytosis. The major direct substrate of TORC2 is the AGC-family kinase Ypk1. Ypk1 connects TORC2 signaling to actin polarization and to endocytosis via the flippase kinases Fpk1 and Fpk2. Here, we report that Fpk1 mediates TORC2 signaling to control actin polarization, but not endocytosis, via aminophospholipid flippases. To search for specific targets of these flippase kinases, we exploited the fact that Fpk1 prefers to phosphorylate Ser residues within the sequence RXS(L/Y)(D/E), which is present ∼90 times in the yeast proteome. We observed that 25 of these sequences are phosphorylated by Fpk1 in vitro. We focused on one sequence hit, the Ark/Prk-family kinase Akl1, as this kinase previously has been implicated in endocytosis. Using a potent ATP-competitive small molecule, CMB4563, to preferentially inhibit TORC2, we found that Fpk1-mediated Akl1 phosphorylation inhibits Akl1 activity, which, in turn, reduces phosphorylation of Pan1 and of other endocytic coat proteins and ultimately contributes to a slowing of endocytosis kinetics. These results indicate that the regulation of actin polarization and endocytosis downstream of TORC2 is signaled through separate pathways that bifurcate at the level of the flippase kinases.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.RA117.001615</identifier><identifier>PMID: 29895620</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>actin ; Actin Cytoskeleton - drug effects ; Actin Cytoskeleton - metabolism ; Actin Cytoskeleton - ultrastructure ; aminophospholipid flippase ; Ark1/Prk1 family ; Cell Membrane - drug effects ; Cell Membrane - metabolism ; Cell Membrane - ultrastructure ; endocytosis ; Endocytosis - drug effects ; Endocytosis - genetics ; Fpk1 ; Gene Expression Regulation, Fungal ; Glycerol - metabolism ; Glycogen Synthase Kinase 3 - genetics ; Glycogen Synthase Kinase 3 - metabolism ; in vitro kinase assay ; Mechanistic Target of Rapamycin Complex 2 - antagonists &amp; inhibitors ; Mechanistic Target of Rapamycin Complex 2 - genetics ; Mechanistic Target of Rapamycin Complex 2 - metabolism ; membrane function ; Microfilament Proteins - genetics ; Microfilament Proteins - metabolism ; Pan1 ; Phosphorylation - drug effects ; Protein Kinase Inhibitors - pharmacology ; Protein Kinases - genetics ; Protein Kinases - metabolism ; Saccharomyces cerevisiae - drug effects ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae - ultrastructure ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Serine - metabolism ; Signal Transduction ; Sphingolipids - biosynthesis ; target of rapamycin (TOR)</subject><ispartof>The Journal of biological chemistry, 2018-08, Vol.293 (31), p.12043-12053</ispartof><rights>2018 © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><rights>2018 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><rights>2018 by The American Society for Biochemistry and Molecular Biology, Inc. 2018 The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-f0fbf42149d856d3d760e1df674701d323a801656ffbbac924419e308443c10f3</citedby><cites>FETCH-LOGICAL-c513t-f0fbf42149d856d3d760e1df674701d323a801656ffbbac924419e308443c10f3</cites><orcidid>0000-0001-6019-9574 ; 0000-0002-2482-603X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6078453/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925820313909$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3535,27903,27904,45759,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29895620$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bourgoint, Clélia</creatorcontrib><creatorcontrib>Rispal, Delphine</creatorcontrib><creatorcontrib>Berti, Marina</creatorcontrib><creatorcontrib>Filipuzzi, Ireos</creatorcontrib><creatorcontrib>Helliwell, Stephen B.</creatorcontrib><creatorcontrib>Prouteau, Manoël</creatorcontrib><creatorcontrib>Loewith, Robbie</creatorcontrib><title>Target of rapamycin complex 2–dependent phosphorylation of the coat protein Pan1 by Akl1 controls endocytosis dynamics in Saccharomyces cerevisiae</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Target of rapamycin complex 2 (TORC2) is a widely conserved serine/threonine protein kinase. In the yeast Saccharomyces cerevisiae, TORC2 is essential, playing a key role in plasma membrane homeostasis. In this role, TORC2 regulates diverse processes, including sphingolipid synthesis, glycerol production and efflux, polarization of the actin cytoskeleton, and endocytosis. The major direct substrate of TORC2 is the AGC-family kinase Ypk1. Ypk1 connects TORC2 signaling to actin polarization and to endocytosis via the flippase kinases Fpk1 and Fpk2. Here, we report that Fpk1 mediates TORC2 signaling to control actin polarization, but not endocytosis, via aminophospholipid flippases. To search for specific targets of these flippase kinases, we exploited the fact that Fpk1 prefers to phosphorylate Ser residues within the sequence RXS(L/Y)(D/E), which is present ∼90 times in the yeast proteome. We observed that 25 of these sequences are phosphorylated by Fpk1 in vitro. We focused on one sequence hit, the Ark/Prk-family kinase Akl1, as this kinase previously has been implicated in endocytosis. Using a potent ATP-competitive small molecule, CMB4563, to preferentially inhibit TORC2, we found that Fpk1-mediated Akl1 phosphorylation inhibits Akl1 activity, which, in turn, reduces phosphorylation of Pan1 and of other endocytic coat proteins and ultimately contributes to a slowing of endocytosis kinetics. These results indicate that the regulation of actin polarization and endocytosis downstream of TORC2 is signaled through separate pathways that bifurcate at the level of the flippase kinases.</description><subject>actin</subject><subject>Actin Cytoskeleton - drug effects</subject><subject>Actin Cytoskeleton - metabolism</subject><subject>Actin Cytoskeleton - ultrastructure</subject><subject>aminophospholipid flippase</subject><subject>Ark1/Prk1 family</subject><subject>Cell Membrane - drug effects</subject><subject>Cell Membrane - metabolism</subject><subject>Cell Membrane - ultrastructure</subject><subject>endocytosis</subject><subject>Endocytosis - drug effects</subject><subject>Endocytosis - genetics</subject><subject>Fpk1</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Glycerol - metabolism</subject><subject>Glycogen Synthase Kinase 3 - genetics</subject><subject>Glycogen Synthase Kinase 3 - metabolism</subject><subject>in vitro kinase assay</subject><subject>Mechanistic Target of Rapamycin Complex 2 - antagonists &amp; inhibitors</subject><subject>Mechanistic Target of Rapamycin Complex 2 - genetics</subject><subject>Mechanistic Target of Rapamycin Complex 2 - metabolism</subject><subject>membrane function</subject><subject>Microfilament Proteins - genetics</subject><subject>Microfilament Proteins - metabolism</subject><subject>Pan1</subject><subject>Phosphorylation - drug effects</subject><subject>Protein Kinase Inhibitors - pharmacology</subject><subject>Protein Kinases - genetics</subject><subject>Protein Kinases - metabolism</subject><subject>Saccharomyces cerevisiae - drug effects</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae - ultrastructure</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Serine - metabolism</subject><subject>Signal Transduction</subject><subject>Sphingolipids - biosynthesis</subject><subject>target of rapamycin (TOR)</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kc9uFSEUxonR2Gt178qwdDNXGGD-uDC5aWo1aaLRmrgjDBx6qTMwAvfG2fUd9Al9Eqm3NrqQhLA4v-87h_Mh9JSSNSUtf3E16PWHDaXtmhDaUHEPrSjpWMUE_XwfrQipadXXojtCj1K6IuXwnj5ER3Xf9aKpyQr9uFDxEjIOFkc1q2nRzmMdpnmEb7j-ef3dwAzegM943oZUblxGlV3wN5K8hQKrUoshQ1G-V57iYcGbLyMtFZ9jGBMuBkEvOSSXsFm8mpxOuNAfldZbFUPpCglriLB3ySl4jB5YNSZ4cvseo0-vTy9O3lTn787enmzOKy0oy5UldrC8prw3nWgMM21DgBrbtLwl1LCaqa6sRTTWDoPSfc057YGRjnOmKbHsGL06-M67YQKjyy-jGuUc3aTiIoNy8t-Kd1t5GfayIW3HBSsGz28NYvi6g5Tl5JKGcVQewi7JmgjeC055V1ByQHUMKUWwd20okTdhyhKm_B2mPIRZJM_-Hu9O8Ce9Arw8AFCWtHcQZdIOvAbjIugsTXD_d_8F_ECzhw</recordid><startdate>20180803</startdate><enddate>20180803</enddate><creator>Bourgoint, Clélia</creator><creator>Rispal, Delphine</creator><creator>Berti, Marina</creator><creator>Filipuzzi, Ireos</creator><creator>Helliwell, Stephen B.</creator><creator>Prouteau, Manoël</creator><creator>Loewith, Robbie</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6019-9574</orcidid><orcidid>https://orcid.org/0000-0002-2482-603X</orcidid></search><sort><creationdate>20180803</creationdate><title>Target of rapamycin complex 2–dependent phosphorylation of the coat protein Pan1 by Akl1 controls endocytosis dynamics in Saccharomyces cerevisiae</title><author>Bourgoint, Clélia ; Rispal, Delphine ; Berti, Marina ; Filipuzzi, Ireos ; Helliwell, Stephen B. ; Prouteau, Manoël ; Loewith, Robbie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-f0fbf42149d856d3d760e1df674701d323a801656ffbbac924419e308443c10f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>actin</topic><topic>Actin Cytoskeleton - drug effects</topic><topic>Actin Cytoskeleton - metabolism</topic><topic>Actin Cytoskeleton - ultrastructure</topic><topic>aminophospholipid flippase</topic><topic>Ark1/Prk1 family</topic><topic>Cell Membrane - drug effects</topic><topic>Cell Membrane - metabolism</topic><topic>Cell Membrane - ultrastructure</topic><topic>endocytosis</topic><topic>Endocytosis - drug effects</topic><topic>Endocytosis - genetics</topic><topic>Fpk1</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Glycerol - metabolism</topic><topic>Glycogen Synthase Kinase 3 - genetics</topic><topic>Glycogen Synthase Kinase 3 - metabolism</topic><topic>in vitro kinase assay</topic><topic>Mechanistic Target of Rapamycin Complex 2 - antagonists &amp; inhibitors</topic><topic>Mechanistic Target of Rapamycin Complex 2 - genetics</topic><topic>Mechanistic Target of Rapamycin Complex 2 - metabolism</topic><topic>membrane function</topic><topic>Microfilament Proteins - genetics</topic><topic>Microfilament Proteins - metabolism</topic><topic>Pan1</topic><topic>Phosphorylation - drug effects</topic><topic>Protein Kinase Inhibitors - pharmacology</topic><topic>Protein Kinases - genetics</topic><topic>Protein Kinases - metabolism</topic><topic>Saccharomyces cerevisiae - drug effects</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae - ultrastructure</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Serine - metabolism</topic><topic>Signal Transduction</topic><topic>Sphingolipids - biosynthesis</topic><topic>target of rapamycin (TOR)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bourgoint, Clélia</creatorcontrib><creatorcontrib>Rispal, Delphine</creatorcontrib><creatorcontrib>Berti, Marina</creatorcontrib><creatorcontrib>Filipuzzi, Ireos</creatorcontrib><creatorcontrib>Helliwell, Stephen B.</creatorcontrib><creatorcontrib>Prouteau, Manoël</creatorcontrib><creatorcontrib>Loewith, Robbie</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bourgoint, Clélia</au><au>Rispal, Delphine</au><au>Berti, Marina</au><au>Filipuzzi, Ireos</au><au>Helliwell, Stephen B.</au><au>Prouteau, Manoël</au><au>Loewith, Robbie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Target of rapamycin complex 2–dependent phosphorylation of the coat protein Pan1 by Akl1 controls endocytosis dynamics in Saccharomyces cerevisiae</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2018-08-03</date><risdate>2018</risdate><volume>293</volume><issue>31</issue><spage>12043</spage><epage>12053</epage><pages>12043-12053</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Target of rapamycin complex 2 (TORC2) is a widely conserved serine/threonine protein kinase. In the yeast Saccharomyces cerevisiae, TORC2 is essential, playing a key role in plasma membrane homeostasis. In this role, TORC2 regulates diverse processes, including sphingolipid synthesis, glycerol production and efflux, polarization of the actin cytoskeleton, and endocytosis. The major direct substrate of TORC2 is the AGC-family kinase Ypk1. Ypk1 connects TORC2 signaling to actin polarization and to endocytosis via the flippase kinases Fpk1 and Fpk2. Here, we report that Fpk1 mediates TORC2 signaling to control actin polarization, but not endocytosis, via aminophospholipid flippases. To search for specific targets of these flippase kinases, we exploited the fact that Fpk1 prefers to phosphorylate Ser residues within the sequence RXS(L/Y)(D/E), which is present ∼90 times in the yeast proteome. We observed that 25 of these sequences are phosphorylated by Fpk1 in vitro. We focused on one sequence hit, the Ark/Prk-family kinase Akl1, as this kinase previously has been implicated in endocytosis. Using a potent ATP-competitive small molecule, CMB4563, to preferentially inhibit TORC2, we found that Fpk1-mediated Akl1 phosphorylation inhibits Akl1 activity, which, in turn, reduces phosphorylation of Pan1 and of other endocytic coat proteins and ultimately contributes to a slowing of endocytosis kinetics. These results indicate that the regulation of actin polarization and endocytosis downstream of TORC2 is signaled through separate pathways that bifurcate at the level of the flippase kinases.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>29895620</pmid><doi>10.1074/jbc.RA117.001615</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6019-9574</orcidid><orcidid>https://orcid.org/0000-0002-2482-603X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2018-08, Vol.293 (31), p.12043-12053
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6078453
source Open Access: PubMed Central; ScienceDirect®
subjects actin
Actin Cytoskeleton - drug effects
Actin Cytoskeleton - metabolism
Actin Cytoskeleton - ultrastructure
aminophospholipid flippase
Ark1/Prk1 family
Cell Membrane - drug effects
Cell Membrane - metabolism
Cell Membrane - ultrastructure
endocytosis
Endocytosis - drug effects
Endocytosis - genetics
Fpk1
Gene Expression Regulation, Fungal
Glycerol - metabolism
Glycogen Synthase Kinase 3 - genetics
Glycogen Synthase Kinase 3 - metabolism
in vitro kinase assay
Mechanistic Target of Rapamycin Complex 2 - antagonists & inhibitors
Mechanistic Target of Rapamycin Complex 2 - genetics
Mechanistic Target of Rapamycin Complex 2 - metabolism
membrane function
Microfilament Proteins - genetics
Microfilament Proteins - metabolism
Pan1
Phosphorylation - drug effects
Protein Kinase Inhibitors - pharmacology
Protein Kinases - genetics
Protein Kinases - metabolism
Saccharomyces cerevisiae - drug effects
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae - ultrastructure
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Serine - metabolism
Signal Transduction
Sphingolipids - biosynthesis
target of rapamycin (TOR)
title Target of rapamycin complex 2–dependent phosphorylation of the coat protein Pan1 by Akl1 controls endocytosis dynamics in Saccharomyces cerevisiae
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T01%3A46%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Target%20of%20rapamycin%20complex%202%E2%80%93dependent%20phosphorylation%20of%20the%20coat%20protein%20Pan1%20by%20Akl1%20controls%20endocytosis%20dynamics%20in%20Saccharomyces%20cerevisiae&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Bourgoint,%20Cl%C3%A9lia&rft.date=2018-08-03&rft.volume=293&rft.issue=31&rft.spage=12043&rft.epage=12053&rft.pages=12043-12053&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.RA117.001615&rft_dat=%3Cproquest_pubme%3E2054954148%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c513t-f0fbf42149d856d3d760e1df674701d323a801656ffbbac924419e308443c10f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2054954148&rft_id=info:pmid/29895620&rfr_iscdi=true