Loading…

Machine learning in chemoinformatics and drug discovery

•Chemical graph theory and descriptors in drug discovery.•Chemical fingerprint and similarity analysis.•Machine learning models for virtual screening.•Future challenges and direction in machine-learning-based drug discovery. Chemoinformatics is an established discipline focusing on extracting, proce...

Full description

Saved in:
Bibliographic Details
Published in:Drug discovery today 2018-08, Vol.23 (8), p.1538-1546
Main Authors: Lo, Yu-Chen, Rensi, Stefano E., Torng, Wen, Altman, Russ B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c529t-7ea75ca5f48af1952c2d417ddb02d75a96f227284406d7a54c79b3b741c0cc4a3
cites cdi_FETCH-LOGICAL-c529t-7ea75ca5f48af1952c2d417ddb02d75a96f227284406d7a54c79b3b741c0cc4a3
container_end_page 1546
container_issue 8
container_start_page 1538
container_title Drug discovery today
container_volume 23
creator Lo, Yu-Chen
Rensi, Stefano E.
Torng, Wen
Altman, Russ B.
description •Chemical graph theory and descriptors in drug discovery.•Chemical fingerprint and similarity analysis.•Machine learning models for virtual screening.•Future challenges and direction in machine-learning-based drug discovery. Chemoinformatics is an established discipline focusing on extracting, processing and extrapolating meaningful data from chemical structures. With the rapid explosion of chemical ‘big’ data from HTS and combinatorial synthesis, machine learning has become an indispensable tool for drug designers to mine chemical information from large compound databases to design drugs with important biological properties. To process the chemical data, we first reviewed multiple processing layers in the chemoinformatics pipeline followed by the introduction of commonly used machine learning models in drug discovery and QSAR analysis. Here, we present basic principles and recent case studies to demonstrate the utility of machine learning techniques in chemoinformatics analyses; and we discuss limitations and future directions to guide further development in this evolving field.
doi_str_mv 10.1016/j.drudis.2018.05.010
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6078794</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359644617304695</els_id><sourcerecordid>2038273609</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-7ea75ca5f48af1952c2d417ddb02d75a96f227284406d7a54c79b3b741c0cc4a3</originalsourceid><addsrcrecordid>eNp9kEFP3DAQhS0EYoH2H1RVjlySjh07ji-VKkQLEhUXOFtee7LrVWKDnV2Jf1-jXaC99DQjzZv3Zj5CvlBoKNDu26Zxaet8bhjQvgHRAIUjckZ72deib9lx6Vuh6o7zbkHOc94AUKZEd0oWTEkBCtgZkb-NXfuA1YgmBR9WlQ-VXeMUfRhimszsba5McFVJW1Ulz8YdppdP5GQwY8bPh3pBHn9eP1zd1Hf3v26vftzVVjA11xKNFNaIgfdmoEowyxyn0rklMCeFUd3AmGQ959A5aQS3Ui3bpeTUgrXctBfk-973abuc0FkMczKjfkp-MulFR-P1v5Pg13oVd7oD2UvFi8HlwSDF5y3mWU_lBxxHEzBus2bQ9ky2Hagi5XupTTHnhMN7DAX9ylxv9J65fmWuQejCvKx9_fvE96U3yB8_YAG185h0th6DRecT2lm76P-f8AcCTpWr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2038273609</pqid></control><display><type>article</type><title>Machine learning in chemoinformatics and drug discovery</title><source>ScienceDirect Freedom Collection</source><creator>Lo, Yu-Chen ; Rensi, Stefano E. ; Torng, Wen ; Altman, Russ B.</creator><creatorcontrib>Lo, Yu-Chen ; Rensi, Stefano E. ; Torng, Wen ; Altman, Russ B.</creatorcontrib><description>•Chemical graph theory and descriptors in drug discovery.•Chemical fingerprint and similarity analysis.•Machine learning models for virtual screening.•Future challenges and direction in machine-learning-based drug discovery. Chemoinformatics is an established discipline focusing on extracting, processing and extrapolating meaningful data from chemical structures. With the rapid explosion of chemical ‘big’ data from HTS and combinatorial synthesis, machine learning has become an indispensable tool for drug designers to mine chemical information from large compound databases to design drugs with important biological properties. To process the chemical data, we first reviewed multiple processing layers in the chemoinformatics pipeline followed by the introduction of commonly used machine learning models in drug discovery and QSAR analysis. Here, we present basic principles and recent case studies to demonstrate the utility of machine learning techniques in chemoinformatics analyses; and we discuss limitations and future directions to guide further development in this evolving field.</description><identifier>ISSN: 1359-6446</identifier><identifier>EISSN: 1878-5832</identifier><identifier>DOI: 10.1016/j.drudis.2018.05.010</identifier><identifier>PMID: 29750902</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Diffusion of Innovation ; Drug Discovery - methods ; High-Throughput Screening Assays ; Humans ; Informatics ; Machine Learning ; Molecular Structure ; Pattern Recognition, Automated ; Pharmaceutical Preparations - chemistry ; Quantitative Structure-Activity Relationship</subject><ispartof>Drug discovery today, 2018-08, Vol.23 (8), p.1538-1546</ispartof><rights>2018 The Authors</rights><rights>Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-7ea75ca5f48af1952c2d417ddb02d75a96f227284406d7a54c79b3b741c0cc4a3</citedby><cites>FETCH-LOGICAL-c529t-7ea75ca5f48af1952c2d417ddb02d75a96f227284406d7a54c79b3b741c0cc4a3</cites><orcidid>0000-0003-3859-2905</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29750902$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lo, Yu-Chen</creatorcontrib><creatorcontrib>Rensi, Stefano E.</creatorcontrib><creatorcontrib>Torng, Wen</creatorcontrib><creatorcontrib>Altman, Russ B.</creatorcontrib><title>Machine learning in chemoinformatics and drug discovery</title><title>Drug discovery today</title><addtitle>Drug Discov Today</addtitle><description>•Chemical graph theory and descriptors in drug discovery.•Chemical fingerprint and similarity analysis.•Machine learning models for virtual screening.•Future challenges and direction in machine-learning-based drug discovery. Chemoinformatics is an established discipline focusing on extracting, processing and extrapolating meaningful data from chemical structures. With the rapid explosion of chemical ‘big’ data from HTS and combinatorial synthesis, machine learning has become an indispensable tool for drug designers to mine chemical information from large compound databases to design drugs with important biological properties. To process the chemical data, we first reviewed multiple processing layers in the chemoinformatics pipeline followed by the introduction of commonly used machine learning models in drug discovery and QSAR analysis. Here, we present basic principles and recent case studies to demonstrate the utility of machine learning techniques in chemoinformatics analyses; and we discuss limitations and future directions to guide further development in this evolving field.</description><subject>Animals</subject><subject>Diffusion of Innovation</subject><subject>Drug Discovery - methods</subject><subject>High-Throughput Screening Assays</subject><subject>Humans</subject><subject>Informatics</subject><subject>Machine Learning</subject><subject>Molecular Structure</subject><subject>Pattern Recognition, Automated</subject><subject>Pharmaceutical Preparations - chemistry</subject><subject>Quantitative Structure-Activity Relationship</subject><issn>1359-6446</issn><issn>1878-5832</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kEFP3DAQhS0EYoH2H1RVjlySjh07ji-VKkQLEhUXOFtee7LrVWKDnV2Jf1-jXaC99DQjzZv3Zj5CvlBoKNDu26Zxaet8bhjQvgHRAIUjckZ72deib9lx6Vuh6o7zbkHOc94AUKZEd0oWTEkBCtgZkb-NXfuA1YgmBR9WlQ-VXeMUfRhimszsba5McFVJW1Ulz8YdppdP5GQwY8bPh3pBHn9eP1zd1Hf3v26vftzVVjA11xKNFNaIgfdmoEowyxyn0rklMCeFUd3AmGQ959A5aQS3Ui3bpeTUgrXctBfk-973abuc0FkMczKjfkp-MulFR-P1v5Pg13oVd7oD2UvFi8HlwSDF5y3mWU_lBxxHEzBus2bQ9ky2Hagi5XupTTHnhMN7DAX9ylxv9J65fmWuQejCvKx9_fvE96U3yB8_YAG185h0th6DRecT2lm76P-f8AcCTpWr</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Lo, Yu-Chen</creator><creator>Rensi, Stefano E.</creator><creator>Torng, Wen</creator><creator>Altman, Russ B.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3859-2905</orcidid></search><sort><creationdate>20180801</creationdate><title>Machine learning in chemoinformatics and drug discovery</title><author>Lo, Yu-Chen ; Rensi, Stefano E. ; Torng, Wen ; Altman, Russ B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-7ea75ca5f48af1952c2d417ddb02d75a96f227284406d7a54c79b3b741c0cc4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Diffusion of Innovation</topic><topic>Drug Discovery - methods</topic><topic>High-Throughput Screening Assays</topic><topic>Humans</topic><topic>Informatics</topic><topic>Machine Learning</topic><topic>Molecular Structure</topic><topic>Pattern Recognition, Automated</topic><topic>Pharmaceutical Preparations - chemistry</topic><topic>Quantitative Structure-Activity Relationship</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lo, Yu-Chen</creatorcontrib><creatorcontrib>Rensi, Stefano E.</creatorcontrib><creatorcontrib>Torng, Wen</creatorcontrib><creatorcontrib>Altman, Russ B.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Drug discovery today</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lo, Yu-Chen</au><au>Rensi, Stefano E.</au><au>Torng, Wen</au><au>Altman, Russ B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning in chemoinformatics and drug discovery</atitle><jtitle>Drug discovery today</jtitle><addtitle>Drug Discov Today</addtitle><date>2018-08-01</date><risdate>2018</risdate><volume>23</volume><issue>8</issue><spage>1538</spage><epage>1546</epage><pages>1538-1546</pages><issn>1359-6446</issn><eissn>1878-5832</eissn><abstract>•Chemical graph theory and descriptors in drug discovery.•Chemical fingerprint and similarity analysis.•Machine learning models for virtual screening.•Future challenges and direction in machine-learning-based drug discovery. Chemoinformatics is an established discipline focusing on extracting, processing and extrapolating meaningful data from chemical structures. With the rapid explosion of chemical ‘big’ data from HTS and combinatorial synthesis, machine learning has become an indispensable tool for drug designers to mine chemical information from large compound databases to design drugs with important biological properties. To process the chemical data, we first reviewed multiple processing layers in the chemoinformatics pipeline followed by the introduction of commonly used machine learning models in drug discovery and QSAR analysis. Here, we present basic principles and recent case studies to demonstrate the utility of machine learning techniques in chemoinformatics analyses; and we discuss limitations and future directions to guide further development in this evolving field.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>29750902</pmid><doi>10.1016/j.drudis.2018.05.010</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3859-2905</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1359-6446
ispartof Drug discovery today, 2018-08, Vol.23 (8), p.1538-1546
issn 1359-6446
1878-5832
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6078794
source ScienceDirect Freedom Collection
subjects Animals
Diffusion of Innovation
Drug Discovery - methods
High-Throughput Screening Assays
Humans
Informatics
Machine Learning
Molecular Structure
Pattern Recognition, Automated
Pharmaceutical Preparations - chemistry
Quantitative Structure-Activity Relationship
title Machine learning in chemoinformatics and drug discovery
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A18%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20in%20chemoinformatics%20and%20drug%20discovery&rft.jtitle=Drug%20discovery%20today&rft.au=Lo,%20Yu-Chen&rft.date=2018-08-01&rft.volume=23&rft.issue=8&rft.spage=1538&rft.epage=1546&rft.pages=1538-1546&rft.issn=1359-6446&rft.eissn=1878-5832&rft_id=info:doi/10.1016/j.drudis.2018.05.010&rft_dat=%3Cproquest_pubme%3E2038273609%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c529t-7ea75ca5f48af1952c2d417ddb02d75a96f227284406d7a54c79b3b741c0cc4a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2038273609&rft_id=info:pmid/29750902&rfr_iscdi=true