Loading…
Machine learning in chemoinformatics and drug discovery
•Chemical graph theory and descriptors in drug discovery.•Chemical fingerprint and similarity analysis.•Machine learning models for virtual screening.•Future challenges and direction in machine-learning-based drug discovery. Chemoinformatics is an established discipline focusing on extracting, proce...
Saved in:
Published in: | Drug discovery today 2018-08, Vol.23 (8), p.1538-1546 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c529t-7ea75ca5f48af1952c2d417ddb02d75a96f227284406d7a54c79b3b741c0cc4a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c529t-7ea75ca5f48af1952c2d417ddb02d75a96f227284406d7a54c79b3b741c0cc4a3 |
container_end_page | 1546 |
container_issue | 8 |
container_start_page | 1538 |
container_title | Drug discovery today |
container_volume | 23 |
creator | Lo, Yu-Chen Rensi, Stefano E. Torng, Wen Altman, Russ B. |
description | •Chemical graph theory and descriptors in drug discovery.•Chemical fingerprint and similarity analysis.•Machine learning models for virtual screening.•Future challenges and direction in machine-learning-based drug discovery.
Chemoinformatics is an established discipline focusing on extracting, processing and extrapolating meaningful data from chemical structures. With the rapid explosion of chemical ‘big’ data from HTS and combinatorial synthesis, machine learning has become an indispensable tool for drug designers to mine chemical information from large compound databases to design drugs with important biological properties. To process the chemical data, we first reviewed multiple processing layers in the chemoinformatics pipeline followed by the introduction of commonly used machine learning models in drug discovery and QSAR analysis. Here, we present basic principles and recent case studies to demonstrate the utility of machine learning techniques in chemoinformatics analyses; and we discuss limitations and future directions to guide further development in this evolving field. |
doi_str_mv | 10.1016/j.drudis.2018.05.010 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6078794</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359644617304695</els_id><sourcerecordid>2038273609</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-7ea75ca5f48af1952c2d417ddb02d75a96f227284406d7a54c79b3b741c0cc4a3</originalsourceid><addsrcrecordid>eNp9kEFP3DAQhS0EYoH2H1RVjlySjh07ji-VKkQLEhUXOFtee7LrVWKDnV2Jf1-jXaC99DQjzZv3Zj5CvlBoKNDu26Zxaet8bhjQvgHRAIUjckZ72deib9lx6Vuh6o7zbkHOc94AUKZEd0oWTEkBCtgZkb-NXfuA1YgmBR9WlQ-VXeMUfRhimszsba5McFVJW1Ulz8YdppdP5GQwY8bPh3pBHn9eP1zd1Hf3v26vftzVVjA11xKNFNaIgfdmoEowyxyn0rklMCeFUd3AmGQ959A5aQS3Ui3bpeTUgrXctBfk-973abuc0FkMczKjfkp-MulFR-P1v5Pg13oVd7oD2UvFi8HlwSDF5y3mWU_lBxxHEzBus2bQ9ky2Hagi5XupTTHnhMN7DAX9ylxv9J65fmWuQejCvKx9_fvE96U3yB8_YAG185h0th6DRecT2lm76P-f8AcCTpWr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2038273609</pqid></control><display><type>article</type><title>Machine learning in chemoinformatics and drug discovery</title><source>ScienceDirect Freedom Collection</source><creator>Lo, Yu-Chen ; Rensi, Stefano E. ; Torng, Wen ; Altman, Russ B.</creator><creatorcontrib>Lo, Yu-Chen ; Rensi, Stefano E. ; Torng, Wen ; Altman, Russ B.</creatorcontrib><description>•Chemical graph theory and descriptors in drug discovery.•Chemical fingerprint and similarity analysis.•Machine learning models for virtual screening.•Future challenges and direction in machine-learning-based drug discovery.
Chemoinformatics is an established discipline focusing on extracting, processing and extrapolating meaningful data from chemical structures. With the rapid explosion of chemical ‘big’ data from HTS and combinatorial synthesis, machine learning has become an indispensable tool for drug designers to mine chemical information from large compound databases to design drugs with important biological properties. To process the chemical data, we first reviewed multiple processing layers in the chemoinformatics pipeline followed by the introduction of commonly used machine learning models in drug discovery and QSAR analysis. Here, we present basic principles and recent case studies to demonstrate the utility of machine learning techniques in chemoinformatics analyses; and we discuss limitations and future directions to guide further development in this evolving field.</description><identifier>ISSN: 1359-6446</identifier><identifier>EISSN: 1878-5832</identifier><identifier>DOI: 10.1016/j.drudis.2018.05.010</identifier><identifier>PMID: 29750902</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Diffusion of Innovation ; Drug Discovery - methods ; High-Throughput Screening Assays ; Humans ; Informatics ; Machine Learning ; Molecular Structure ; Pattern Recognition, Automated ; Pharmaceutical Preparations - chemistry ; Quantitative Structure-Activity Relationship</subject><ispartof>Drug discovery today, 2018-08, Vol.23 (8), p.1538-1546</ispartof><rights>2018 The Authors</rights><rights>Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-7ea75ca5f48af1952c2d417ddb02d75a96f227284406d7a54c79b3b741c0cc4a3</citedby><cites>FETCH-LOGICAL-c529t-7ea75ca5f48af1952c2d417ddb02d75a96f227284406d7a54c79b3b741c0cc4a3</cites><orcidid>0000-0003-3859-2905</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29750902$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lo, Yu-Chen</creatorcontrib><creatorcontrib>Rensi, Stefano E.</creatorcontrib><creatorcontrib>Torng, Wen</creatorcontrib><creatorcontrib>Altman, Russ B.</creatorcontrib><title>Machine learning in chemoinformatics and drug discovery</title><title>Drug discovery today</title><addtitle>Drug Discov Today</addtitle><description>•Chemical graph theory and descriptors in drug discovery.•Chemical fingerprint and similarity analysis.•Machine learning models for virtual screening.•Future challenges and direction in machine-learning-based drug discovery.
Chemoinformatics is an established discipline focusing on extracting, processing and extrapolating meaningful data from chemical structures. With the rapid explosion of chemical ‘big’ data from HTS and combinatorial synthesis, machine learning has become an indispensable tool for drug designers to mine chemical information from large compound databases to design drugs with important biological properties. To process the chemical data, we first reviewed multiple processing layers in the chemoinformatics pipeline followed by the introduction of commonly used machine learning models in drug discovery and QSAR analysis. Here, we present basic principles and recent case studies to demonstrate the utility of machine learning techniques in chemoinformatics analyses; and we discuss limitations and future directions to guide further development in this evolving field.</description><subject>Animals</subject><subject>Diffusion of Innovation</subject><subject>Drug Discovery - methods</subject><subject>High-Throughput Screening Assays</subject><subject>Humans</subject><subject>Informatics</subject><subject>Machine Learning</subject><subject>Molecular Structure</subject><subject>Pattern Recognition, Automated</subject><subject>Pharmaceutical Preparations - chemistry</subject><subject>Quantitative Structure-Activity Relationship</subject><issn>1359-6446</issn><issn>1878-5832</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kEFP3DAQhS0EYoH2H1RVjlySjh07ji-VKkQLEhUXOFtee7LrVWKDnV2Jf1-jXaC99DQjzZv3Zj5CvlBoKNDu26Zxaet8bhjQvgHRAIUjckZ72deib9lx6Vuh6o7zbkHOc94AUKZEd0oWTEkBCtgZkb-NXfuA1YgmBR9WlQ-VXeMUfRhimszsba5McFVJW1Ulz8YdppdP5GQwY8bPh3pBHn9eP1zd1Hf3v26vftzVVjA11xKNFNaIgfdmoEowyxyn0rklMCeFUd3AmGQ959A5aQS3Ui3bpeTUgrXctBfk-973abuc0FkMczKjfkp-MulFR-P1v5Pg13oVd7oD2UvFi8HlwSDF5y3mWU_lBxxHEzBus2bQ9ky2Hagi5XupTTHnhMN7DAX9ylxv9J65fmWuQejCvKx9_fvE96U3yB8_YAG185h0th6DRecT2lm76P-f8AcCTpWr</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Lo, Yu-Chen</creator><creator>Rensi, Stefano E.</creator><creator>Torng, Wen</creator><creator>Altman, Russ B.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3859-2905</orcidid></search><sort><creationdate>20180801</creationdate><title>Machine learning in chemoinformatics and drug discovery</title><author>Lo, Yu-Chen ; Rensi, Stefano E. ; Torng, Wen ; Altman, Russ B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-7ea75ca5f48af1952c2d417ddb02d75a96f227284406d7a54c79b3b741c0cc4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Diffusion of Innovation</topic><topic>Drug Discovery - methods</topic><topic>High-Throughput Screening Assays</topic><topic>Humans</topic><topic>Informatics</topic><topic>Machine Learning</topic><topic>Molecular Structure</topic><topic>Pattern Recognition, Automated</topic><topic>Pharmaceutical Preparations - chemistry</topic><topic>Quantitative Structure-Activity Relationship</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lo, Yu-Chen</creatorcontrib><creatorcontrib>Rensi, Stefano E.</creatorcontrib><creatorcontrib>Torng, Wen</creatorcontrib><creatorcontrib>Altman, Russ B.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Drug discovery today</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lo, Yu-Chen</au><au>Rensi, Stefano E.</au><au>Torng, Wen</au><au>Altman, Russ B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning in chemoinformatics and drug discovery</atitle><jtitle>Drug discovery today</jtitle><addtitle>Drug Discov Today</addtitle><date>2018-08-01</date><risdate>2018</risdate><volume>23</volume><issue>8</issue><spage>1538</spage><epage>1546</epage><pages>1538-1546</pages><issn>1359-6446</issn><eissn>1878-5832</eissn><abstract>•Chemical graph theory and descriptors in drug discovery.•Chemical fingerprint and similarity analysis.•Machine learning models for virtual screening.•Future challenges and direction in machine-learning-based drug discovery.
Chemoinformatics is an established discipline focusing on extracting, processing and extrapolating meaningful data from chemical structures. With the rapid explosion of chemical ‘big’ data from HTS and combinatorial synthesis, machine learning has become an indispensable tool for drug designers to mine chemical information from large compound databases to design drugs with important biological properties. To process the chemical data, we first reviewed multiple processing layers in the chemoinformatics pipeline followed by the introduction of commonly used machine learning models in drug discovery and QSAR analysis. Here, we present basic principles and recent case studies to demonstrate the utility of machine learning techniques in chemoinformatics analyses; and we discuss limitations and future directions to guide further development in this evolving field.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>29750902</pmid><doi>10.1016/j.drudis.2018.05.010</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3859-2905</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-6446 |
ispartof | Drug discovery today, 2018-08, Vol.23 (8), p.1538-1546 |
issn | 1359-6446 1878-5832 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6078794 |
source | ScienceDirect Freedom Collection |
subjects | Animals Diffusion of Innovation Drug Discovery - methods High-Throughput Screening Assays Humans Informatics Machine Learning Molecular Structure Pattern Recognition, Automated Pharmaceutical Preparations - chemistry Quantitative Structure-Activity Relationship |
title | Machine learning in chemoinformatics and drug discovery |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A18%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20in%20chemoinformatics%20and%20drug%20discovery&rft.jtitle=Drug%20discovery%20today&rft.au=Lo,%20Yu-Chen&rft.date=2018-08-01&rft.volume=23&rft.issue=8&rft.spage=1538&rft.epage=1546&rft.pages=1538-1546&rft.issn=1359-6446&rft.eissn=1878-5832&rft_id=info:doi/10.1016/j.drudis.2018.05.010&rft_dat=%3Cproquest_pubme%3E2038273609%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c529t-7ea75ca5f48af1952c2d417ddb02d75a96f227284406d7a54c79b3b741c0cc4a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2038273609&rft_id=info:pmid/29750902&rfr_iscdi=true |