Loading…
Enhanced Defluoridation Using Novel Millisphere Nanocomposite of La-Doped Li-Al Layered Double Hydroxides Supported by Polymeric Anion Exchanger
A novel nanocomposite bead LaLiAl-LDH@201 was fabricated by doping a small amount of La into nanocrystalline Li/Al layered double hydroxides (LDHs) pre-confined inside polystyrene anion exchanger D201 (LiAl-LDH@201). A systematic characterisation of the resultant LaLiAl-LDH@201 (XRD, SEM-EDS, TEM-ED...
Saved in:
Published in: | Scientific reports 2018-08, Vol.8 (1), p.11741-10, Article 11741 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A novel nanocomposite bead LaLiAl-LDH@201 was fabricated by doping a small amount of La into nanocrystalline Li/Al layered double hydroxides (LDHs) pre-confined inside polystyrene anion exchanger D201 (LiAl-LDH@201). A systematic characterisation of the resultant LaLiAl-LDH@201 (XRD, SEM-EDS, TEM-EDS, and XPS) evidenced the successful incorporation of La into the Li/Al LDHs, with their interlayer distance expanded to allow more exchangeable sites for fluoride uptake. The resultant LaLiAl-LDH@201 showed high and stable defluoridation performance over a wide range of pH from 4 to 9. The superior uptake capacity and affinity for fluoride of LaLiAl-LDH@201 over LiAl-LDH@201 were driven by both the increased anion exchange capacity of the embedded LDHs and the specific La-F interaction evidenced via XPS and TEM-EDS characterisation. Fixed-bed column test confirmed that the working capacity of LaLiAl-LDH@201 for defluoridation of authentic fluoride-rich groundwater was nearly twice that of LiAl-LDH@201. The fluoride-loaded LaLiAl-LDH@201 could be conveniently regenerated
in situ
by using NaOH + NaCl binary solution, achieving desorption efficiency above 98%. Moreover, negligible capacity loss, La leaching, or structure alteration was observed after five adsorption-regeneration cycles, indicating the high stability of LaLiAl-LDH@201. Therefore, the novel millisphere nanocomposite LaLiAl-LDH@201 was promising for efficient defluoridation from water and wastewater. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-018-29497-1 |