Loading…

Correlation of Reactive Oxygen Species Levels with Resveratrol Sensitivities of Anaplastic Thyroid Cancer Cells

Anaplastic thyroid carcinoma (ATC) is the most lethal thyroid malignancy without a reliable therapeutic agent. Resveratrol possesses cancer-suppressive effects, while its effect(s) on ATC cells remains unknown. Because oxidative damage caused by increased reactive oxygen species (ROS) is one of the...

Full description

Saved in:
Bibliographic Details
Published in:Oxidative medicine and cellular longevity 2018-01, Vol.2018 (2018), p.1-12
Main Authors: Liu, Jia, Kong, Qing-You, Wu, Mo-Li, Song, Xue, Tian, Xiao-Ting, Jia, Bin, Zheng, Xu, Li, Hong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Anaplastic thyroid carcinoma (ATC) is the most lethal thyroid malignancy without a reliable therapeutic agent. Resveratrol possesses cancer-suppressive effects, while its effect(s) on ATC cells remains unknown. Because oxidative damage caused by increased reactive oxygen species (ROS) is one of the therapeutic effects of anticancer drugs and oxidative stress-caused mitochondria swelling is observed in resveratrol-treated cancer cells, the oxidative statuses and their relevance with resveratrol sensitivities are elucidated using THJ-16T and THJ-11T ATC cells established from two human anaplastic thyroid carcinoma cases. The results revealed that resveratrol-treated THJ-16T rather than THJ-11T cells showed remarkable growth arrest and extensive apoptosis accompanied with the elevated ROS generation and the attenuated superoxide dismutase 2 (SOD2) and catalase (CAT) levels. Mitochondrial impairment and the enhanced caspase-9/caspase-3 activation are found only in resveratrol-sensitive THJ-16T cells. Treatment with the antioxidant N-acetylcysteine (NAC) partly attenuated resveratrol-induced ROS generation and apoptosis of THJ-16T cells. The levels of resveratrol metabolic enzymes (SULT1A1 and SULT1C2) in THJ-16T cells were lower than those in THJ-11T cells and therefore reversely related with resveratrol sensitivities of ATC cells. Our findings demonstrate the ability of resveratrol to increase ROS generation and oxidative-related cellular lesions in resveratrol-sensitive THJ-16T cells presumably through activating the ROS-mitochondrial signal pathway. The levels of SULTs and ROS may reflect the response manners of ATC cells to resveratrol.
ISSN:1942-0900
1942-0994
DOI:10.1155/2018/6235417