Loading…

Beam Steering Using Momentum-Reconfigurable Goubau Meta-Line Radiators

Spoof/designer surface plasmon polaritons (SPP) and Goubau line belong to the same category of single-conductor surface waveguide. They feature easy integration and high field confinement capability, and hence are good candidates for wave guiding and radiating at terahertz frequencies. Here, we prop...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2018-08, Vol.8 (1), p.11854-8, Article 11854
Main Authors: Tang, Xiao-Lan, Zhang, Qingfeng, Hu, Sanming, Ge, Shangkun, Chen, Yifan, Yu, Hao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Spoof/designer surface plasmon polaritons (SPP) and Goubau line belong to the same category of single-conductor surface waveguide. They feature easy integration and high field confinement capability, and hence are good candidates for wave guiding and radiating at terahertz frequencies. Here, we propose a momentum-reconfigurable Goubau meta-line radiator that is capable of digitally steering its beam at a fixed frequency, in contrast to conventional SPP or Goubau line radiators relying on changing frequencies to steer beams. By periodically loading switchable meta-lines with ON and OFF states along the Goubau line, the modulation period and hence the momentum of Goubau line radiators can be dynamically controlled. The proposed Goubau line radiator is able to steer the main beam at a given frequency by independently switching ON or OFF each unit cell. As a proof of concept, we use line connection and disconnection to mimic ON and OFF state of the switch, respectively. Several radiators, representing different switching coding combinations, are fabricated and experimentally validated. Although this momentum-reconfigurable Goubau meta-line radiator is demonstrated at microwave frequency, it can be easily extended to terahertz frequencies.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-018-29507-2