Loading…
A Neuromuscular Interface for Robotic Devices Control
A neuromuscular interface (NI) that can be employed to operate external robotic devices (RD), including commercial ones, was proposed. Multichannel electromyographic (EMG) signal is used in the control loop. Control signal can also be supplemented with electroencephalography (EEG), limb kinematics,...
Saved in:
Published in: | Computational and mathematical methods in medicine 2018-01, Vol.2018 (2018), p.1-8 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c443t-45556ead36e6b8dba80e3072f2f65030b7b3950576d305f584afb0aa578fe11d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c443t-45556ead36e6b8dba80e3072f2f65030b7b3950576d305f584afb0aa578fe11d3 |
container_end_page | 8 |
container_issue | 2018 |
container_start_page | 1 |
container_title | Computational and mathematical methods in medicine |
container_volume | 2018 |
creator | Pimashkin, Alexey Krilova, Nadia Lobov, Sergey Mironov, Vasily Kastalskiy, Innokentiy Kazantsev, Victor |
description | A neuromuscular interface (NI) that can be employed to operate external robotic devices (RD), including commercial ones, was proposed. Multichannel electromyographic (EMG) signal is used in the control loop. Control signal can also be supplemented with electroencephalography (EEG), limb kinematics, or other modalities. The multiple electrode approach takes advantage of the massive resources of the human brain for solving nontrivial tasks, such as movement coordination. Multilayer artificial neural network was used for feature classification and further to provide command and/or proportional control of three robotic devices. The possibility of using biofeedback can compensate for control errors and implement a fundamentally important feature that has previously limited the development of intelligent exoskeletons, prostheses, and other medical devices. The control system can be integrated with wearable electronics. Examples of technical devices under control of the neuromuscular interface (NI) are presented. |
doi_str_mv | 10.1155/2018/8948145 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6081556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2093311869</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-45556ead36e6b8dba80e3072f2f65030b7b3950576d305f584afb0aa578fe11d3</originalsourceid><addsrcrecordid>eNqNkE1Lw0AQhhdRbK3ePEuOgsbuZj-yvQilfhWKgih4WzbJrI0k2bqbVPz3bmmtevM0A_PwvsOD0DHBF4RwPkwwkUM5YpIwvoP6JGUyFimRu9sdv_TQgfdvGHOScrKPehQThimmfcTH0T10ztadz7tKu2jatOCMziEy1kWPNrNtmUdXsCxz8NHENq2z1SHaM7rycLSZA_R8c_00uYtnD7fTyXgW54zRNmaccwG6oAJEJotMSwwUp4lJjOChP0szOuKYp6KgmBsumTYZ1pqn0gAhBR2gy3XuostqKHII7bpSC1fW2n0qq0v199KUc_Vql0pgGdyIEHC6CXD2vQPfqrr0OVSVbsB2XiV4RCkhUowCer5Gc2e9d2C2NQSrlWm1Mq02pgN-8vu1LfytNgBna2BeNoX-KP8ZB4EBo39oQpMkYfQLSpuPag</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2093311869</pqid></control><display><type>article</type><title>A Neuromuscular Interface for Robotic Devices Control</title><source>Wiley Online Library Open Access</source><creator>Pimashkin, Alexey ; Krilova, Nadia ; Lobov, Sergey ; Mironov, Vasily ; Kastalskiy, Innokentiy ; Kazantsev, Victor</creator><contributor>Thuróczy, György</contributor><creatorcontrib>Pimashkin, Alexey ; Krilova, Nadia ; Lobov, Sergey ; Mironov, Vasily ; Kastalskiy, Innokentiy ; Kazantsev, Victor ; Thuróczy, György</creatorcontrib><description>A neuromuscular interface (NI) that can be employed to operate external robotic devices (RD), including commercial ones, was proposed. Multichannel electromyographic (EMG) signal is used in the control loop. Control signal can also be supplemented with electroencephalography (EEG), limb kinematics, or other modalities. The multiple electrode approach takes advantage of the massive resources of the human brain for solving nontrivial tasks, such as movement coordination. Multilayer artificial neural network was used for feature classification and further to provide command and/or proportional control of three robotic devices. The possibility of using biofeedback can compensate for control errors and implement a fundamentally important feature that has previously limited the development of intelligent exoskeletons, prostheses, and other medical devices. The control system can be integrated with wearable electronics. Examples of technical devices under control of the neuromuscular interface (NI) are presented.</description><identifier>ISSN: 1748-670X</identifier><identifier>EISSN: 1748-6718</identifier><identifier>DOI: 10.1155/2018/8948145</identifier><identifier>PMID: 30140303</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Biomechanical Phenomena ; Electroencephalography ; Humans ; Movement ; Neural Networks (Computer) ; Robotic Surgical Procedures ; User-Computer Interface</subject><ispartof>Computational and mathematical methods in medicine, 2018-01, Vol.2018 (2018), p.1-8</ispartof><rights>Copyright © 2018 Innokentiy Kastalskiy et al.</rights><rights>Copyright © 2018 Innokentiy Kastalskiy et al. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-45556ead36e6b8dba80e3072f2f65030b7b3950576d305f584afb0aa578fe11d3</citedby><cites>FETCH-LOGICAL-c443t-45556ead36e6b8dba80e3072f2f65030b7b3950576d305f584afb0aa578fe11d3</cites><orcidid>0000-0001-6050-4356 ; 0000-0002-5088-0902</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30140303$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Thuróczy, György</contributor><creatorcontrib>Pimashkin, Alexey</creatorcontrib><creatorcontrib>Krilova, Nadia</creatorcontrib><creatorcontrib>Lobov, Sergey</creatorcontrib><creatorcontrib>Mironov, Vasily</creatorcontrib><creatorcontrib>Kastalskiy, Innokentiy</creatorcontrib><creatorcontrib>Kazantsev, Victor</creatorcontrib><title>A Neuromuscular Interface for Robotic Devices Control</title><title>Computational and mathematical methods in medicine</title><addtitle>Comput Math Methods Med</addtitle><description>A neuromuscular interface (NI) that can be employed to operate external robotic devices (RD), including commercial ones, was proposed. Multichannel electromyographic (EMG) signal is used in the control loop. Control signal can also be supplemented with electroencephalography (EEG), limb kinematics, or other modalities. The multiple electrode approach takes advantage of the massive resources of the human brain for solving nontrivial tasks, such as movement coordination. Multilayer artificial neural network was used for feature classification and further to provide command and/or proportional control of three robotic devices. The possibility of using biofeedback can compensate for control errors and implement a fundamentally important feature that has previously limited the development of intelligent exoskeletons, prostheses, and other medical devices. The control system can be integrated with wearable electronics. Examples of technical devices under control of the neuromuscular interface (NI) are presented.</description><subject>Biomechanical Phenomena</subject><subject>Electroencephalography</subject><subject>Humans</subject><subject>Movement</subject><subject>Neural Networks (Computer)</subject><subject>Robotic Surgical Procedures</subject><subject>User-Computer Interface</subject><issn>1748-670X</issn><issn>1748-6718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNkE1Lw0AQhhdRbK3ePEuOgsbuZj-yvQilfhWKgih4WzbJrI0k2bqbVPz3bmmtevM0A_PwvsOD0DHBF4RwPkwwkUM5YpIwvoP6JGUyFimRu9sdv_TQgfdvGHOScrKPehQThimmfcTH0T10ztadz7tKu2jatOCMziEy1kWPNrNtmUdXsCxz8NHENq2z1SHaM7rycLSZA_R8c_00uYtnD7fTyXgW54zRNmaccwG6oAJEJotMSwwUp4lJjOChP0szOuKYp6KgmBsumTYZ1pqn0gAhBR2gy3XuostqKHII7bpSC1fW2n0qq0v199KUc_Vql0pgGdyIEHC6CXD2vQPfqrr0OVSVbsB2XiV4RCkhUowCer5Gc2e9d2C2NQSrlWm1Mq02pgN-8vu1LfytNgBna2BeNoX-KP8ZB4EBo39oQpMkYfQLSpuPag</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Pimashkin, Alexey</creator><creator>Krilova, Nadia</creator><creator>Lobov, Sergey</creator><creator>Mironov, Vasily</creator><creator>Kastalskiy, Innokentiy</creator><creator>Kazantsev, Victor</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6050-4356</orcidid><orcidid>https://orcid.org/0000-0002-5088-0902</orcidid></search><sort><creationdate>20180101</creationdate><title>A Neuromuscular Interface for Robotic Devices Control</title><author>Pimashkin, Alexey ; Krilova, Nadia ; Lobov, Sergey ; Mironov, Vasily ; Kastalskiy, Innokentiy ; Kazantsev, Victor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-45556ead36e6b8dba80e3072f2f65030b7b3950576d305f584afb0aa578fe11d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biomechanical Phenomena</topic><topic>Electroencephalography</topic><topic>Humans</topic><topic>Movement</topic><topic>Neural Networks (Computer)</topic><topic>Robotic Surgical Procedures</topic><topic>User-Computer Interface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pimashkin, Alexey</creatorcontrib><creatorcontrib>Krilova, Nadia</creatorcontrib><creatorcontrib>Lobov, Sergey</creatorcontrib><creatorcontrib>Mironov, Vasily</creatorcontrib><creatorcontrib>Kastalskiy, Innokentiy</creatorcontrib><creatorcontrib>Kazantsev, Victor</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational and mathematical methods in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pimashkin, Alexey</au><au>Krilova, Nadia</au><au>Lobov, Sergey</au><au>Mironov, Vasily</au><au>Kastalskiy, Innokentiy</au><au>Kazantsev, Victor</au><au>Thuróczy, György</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Neuromuscular Interface for Robotic Devices Control</atitle><jtitle>Computational and mathematical methods in medicine</jtitle><addtitle>Comput Math Methods Med</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>2018</volume><issue>2018</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1748-670X</issn><eissn>1748-6718</eissn><abstract>A neuromuscular interface (NI) that can be employed to operate external robotic devices (RD), including commercial ones, was proposed. Multichannel electromyographic (EMG) signal is used in the control loop. Control signal can also be supplemented with electroencephalography (EEG), limb kinematics, or other modalities. The multiple electrode approach takes advantage of the massive resources of the human brain for solving nontrivial tasks, such as movement coordination. Multilayer artificial neural network was used for feature classification and further to provide command and/or proportional control of three robotic devices. The possibility of using biofeedback can compensate for control errors and implement a fundamentally important feature that has previously limited the development of intelligent exoskeletons, prostheses, and other medical devices. The control system can be integrated with wearable electronics. Examples of technical devices under control of the neuromuscular interface (NI) are presented.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>30140303</pmid><doi>10.1155/2018/8948145</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6050-4356</orcidid><orcidid>https://orcid.org/0000-0002-5088-0902</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-670X |
ispartof | Computational and mathematical methods in medicine, 2018-01, Vol.2018 (2018), p.1-8 |
issn | 1748-670X 1748-6718 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6081556 |
source | Wiley Online Library Open Access |
subjects | Biomechanical Phenomena Electroencephalography Humans Movement Neural Networks (Computer) Robotic Surgical Procedures User-Computer Interface |
title | A Neuromuscular Interface for Robotic Devices Control |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T02%3A55%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Neuromuscular%20Interface%20for%20Robotic%20Devices%20Control&rft.jtitle=Computational%20and%20mathematical%20methods%20in%20medicine&rft.au=Pimashkin,%20Alexey&rft.date=2018-01-01&rft.volume=2018&rft.issue=2018&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1748-670X&rft.eissn=1748-6718&rft_id=info:doi/10.1155/2018/8948145&rft_dat=%3Cproquest_pubme%3E2093311869%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c443t-45556ead36e6b8dba80e3072f2f65030b7b3950576d305f584afb0aa578fe11d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2093311869&rft_id=info:pmid/30140303&rfr_iscdi=true |