Loading…

A Neuromuscular Interface for Robotic Devices Control

A neuromuscular interface (NI) that can be employed to operate external robotic devices (RD), including commercial ones, was proposed. Multichannel electromyographic (EMG) signal is used in the control loop. Control signal can also be supplemented with electroencephalography (EEG), limb kinematics,...

Full description

Saved in:
Bibliographic Details
Published in:Computational and mathematical methods in medicine 2018-01, Vol.2018 (2018), p.1-8
Main Authors: Pimashkin, Alexey, Krilova, Nadia, Lobov, Sergey, Mironov, Vasily, Kastalskiy, Innokentiy, Kazantsev, Victor
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c443t-45556ead36e6b8dba80e3072f2f65030b7b3950576d305f584afb0aa578fe11d3
cites cdi_FETCH-LOGICAL-c443t-45556ead36e6b8dba80e3072f2f65030b7b3950576d305f584afb0aa578fe11d3
container_end_page 8
container_issue 2018
container_start_page 1
container_title Computational and mathematical methods in medicine
container_volume 2018
creator Pimashkin, Alexey
Krilova, Nadia
Lobov, Sergey
Mironov, Vasily
Kastalskiy, Innokentiy
Kazantsev, Victor
description A neuromuscular interface (NI) that can be employed to operate external robotic devices (RD), including commercial ones, was proposed. Multichannel electromyographic (EMG) signal is used in the control loop. Control signal can also be supplemented with electroencephalography (EEG), limb kinematics, or other modalities. The multiple electrode approach takes advantage of the massive resources of the human brain for solving nontrivial tasks, such as movement coordination. Multilayer artificial neural network was used for feature classification and further to provide command and/or proportional control of three robotic devices. The possibility of using biofeedback can compensate for control errors and implement a fundamentally important feature that has previously limited the development of intelligent exoskeletons, prostheses, and other medical devices. The control system can be integrated with wearable electronics. Examples of technical devices under control of the neuromuscular interface (NI) are presented.
doi_str_mv 10.1155/2018/8948145
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6081556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2093311869</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-45556ead36e6b8dba80e3072f2f65030b7b3950576d305f584afb0aa578fe11d3</originalsourceid><addsrcrecordid>eNqNkE1Lw0AQhhdRbK3ePEuOgsbuZj-yvQilfhWKgih4WzbJrI0k2bqbVPz3bmmtevM0A_PwvsOD0DHBF4RwPkwwkUM5YpIwvoP6JGUyFimRu9sdv_TQgfdvGHOScrKPehQThimmfcTH0T10ztadz7tKu2jatOCMziEy1kWPNrNtmUdXsCxz8NHENq2z1SHaM7rycLSZA_R8c_00uYtnD7fTyXgW54zRNmaccwG6oAJEJotMSwwUp4lJjOChP0szOuKYp6KgmBsumTYZ1pqn0gAhBR2gy3XuostqKHII7bpSC1fW2n0qq0v199KUc_Vql0pgGdyIEHC6CXD2vQPfqrr0OVSVbsB2XiV4RCkhUowCer5Gc2e9d2C2NQSrlWm1Mq02pgN-8vu1LfytNgBna2BeNoX-KP8ZB4EBo39oQpMkYfQLSpuPag</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2093311869</pqid></control><display><type>article</type><title>A Neuromuscular Interface for Robotic Devices Control</title><source>Wiley Online Library Open Access</source><creator>Pimashkin, Alexey ; Krilova, Nadia ; Lobov, Sergey ; Mironov, Vasily ; Kastalskiy, Innokentiy ; Kazantsev, Victor</creator><contributor>Thuróczy, György</contributor><creatorcontrib>Pimashkin, Alexey ; Krilova, Nadia ; Lobov, Sergey ; Mironov, Vasily ; Kastalskiy, Innokentiy ; Kazantsev, Victor ; Thuróczy, György</creatorcontrib><description>A neuromuscular interface (NI) that can be employed to operate external robotic devices (RD), including commercial ones, was proposed. Multichannel electromyographic (EMG) signal is used in the control loop. Control signal can also be supplemented with electroencephalography (EEG), limb kinematics, or other modalities. The multiple electrode approach takes advantage of the massive resources of the human brain for solving nontrivial tasks, such as movement coordination. Multilayer artificial neural network was used for feature classification and further to provide command and/or proportional control of three robotic devices. The possibility of using biofeedback can compensate for control errors and implement a fundamentally important feature that has previously limited the development of intelligent exoskeletons, prostheses, and other medical devices. The control system can be integrated with wearable electronics. Examples of technical devices under control of the neuromuscular interface (NI) are presented.</description><identifier>ISSN: 1748-670X</identifier><identifier>EISSN: 1748-6718</identifier><identifier>DOI: 10.1155/2018/8948145</identifier><identifier>PMID: 30140303</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Biomechanical Phenomena ; Electroencephalography ; Humans ; Movement ; Neural Networks (Computer) ; Robotic Surgical Procedures ; User-Computer Interface</subject><ispartof>Computational and mathematical methods in medicine, 2018-01, Vol.2018 (2018), p.1-8</ispartof><rights>Copyright © 2018 Innokentiy Kastalskiy et al.</rights><rights>Copyright © 2018 Innokentiy Kastalskiy et al. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-45556ead36e6b8dba80e3072f2f65030b7b3950576d305f584afb0aa578fe11d3</citedby><cites>FETCH-LOGICAL-c443t-45556ead36e6b8dba80e3072f2f65030b7b3950576d305f584afb0aa578fe11d3</cites><orcidid>0000-0001-6050-4356 ; 0000-0002-5088-0902</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30140303$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Thuróczy, György</contributor><creatorcontrib>Pimashkin, Alexey</creatorcontrib><creatorcontrib>Krilova, Nadia</creatorcontrib><creatorcontrib>Lobov, Sergey</creatorcontrib><creatorcontrib>Mironov, Vasily</creatorcontrib><creatorcontrib>Kastalskiy, Innokentiy</creatorcontrib><creatorcontrib>Kazantsev, Victor</creatorcontrib><title>A Neuromuscular Interface for Robotic Devices Control</title><title>Computational and mathematical methods in medicine</title><addtitle>Comput Math Methods Med</addtitle><description>A neuromuscular interface (NI) that can be employed to operate external robotic devices (RD), including commercial ones, was proposed. Multichannel electromyographic (EMG) signal is used in the control loop. Control signal can also be supplemented with electroencephalography (EEG), limb kinematics, or other modalities. The multiple electrode approach takes advantage of the massive resources of the human brain for solving nontrivial tasks, such as movement coordination. Multilayer artificial neural network was used for feature classification and further to provide command and/or proportional control of three robotic devices. The possibility of using biofeedback can compensate for control errors and implement a fundamentally important feature that has previously limited the development of intelligent exoskeletons, prostheses, and other medical devices. The control system can be integrated with wearable electronics. Examples of technical devices under control of the neuromuscular interface (NI) are presented.</description><subject>Biomechanical Phenomena</subject><subject>Electroencephalography</subject><subject>Humans</subject><subject>Movement</subject><subject>Neural Networks (Computer)</subject><subject>Robotic Surgical Procedures</subject><subject>User-Computer Interface</subject><issn>1748-670X</issn><issn>1748-6718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNkE1Lw0AQhhdRbK3ePEuOgsbuZj-yvQilfhWKgih4WzbJrI0k2bqbVPz3bmmtevM0A_PwvsOD0DHBF4RwPkwwkUM5YpIwvoP6JGUyFimRu9sdv_TQgfdvGHOScrKPehQThimmfcTH0T10ztadz7tKu2jatOCMziEy1kWPNrNtmUdXsCxz8NHENq2z1SHaM7rycLSZA_R8c_00uYtnD7fTyXgW54zRNmaccwG6oAJEJotMSwwUp4lJjOChP0szOuKYp6KgmBsumTYZ1pqn0gAhBR2gy3XuostqKHII7bpSC1fW2n0qq0v199KUc_Vql0pgGdyIEHC6CXD2vQPfqrr0OVSVbsB2XiV4RCkhUowCer5Gc2e9d2C2NQSrlWm1Mq02pgN-8vu1LfytNgBna2BeNoX-KP8ZB4EBo39oQpMkYfQLSpuPag</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Pimashkin, Alexey</creator><creator>Krilova, Nadia</creator><creator>Lobov, Sergey</creator><creator>Mironov, Vasily</creator><creator>Kastalskiy, Innokentiy</creator><creator>Kazantsev, Victor</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6050-4356</orcidid><orcidid>https://orcid.org/0000-0002-5088-0902</orcidid></search><sort><creationdate>20180101</creationdate><title>A Neuromuscular Interface for Robotic Devices Control</title><author>Pimashkin, Alexey ; Krilova, Nadia ; Lobov, Sergey ; Mironov, Vasily ; Kastalskiy, Innokentiy ; Kazantsev, Victor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-45556ead36e6b8dba80e3072f2f65030b7b3950576d305f584afb0aa578fe11d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biomechanical Phenomena</topic><topic>Electroencephalography</topic><topic>Humans</topic><topic>Movement</topic><topic>Neural Networks (Computer)</topic><topic>Robotic Surgical Procedures</topic><topic>User-Computer Interface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pimashkin, Alexey</creatorcontrib><creatorcontrib>Krilova, Nadia</creatorcontrib><creatorcontrib>Lobov, Sergey</creatorcontrib><creatorcontrib>Mironov, Vasily</creatorcontrib><creatorcontrib>Kastalskiy, Innokentiy</creatorcontrib><creatorcontrib>Kazantsev, Victor</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational and mathematical methods in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pimashkin, Alexey</au><au>Krilova, Nadia</au><au>Lobov, Sergey</au><au>Mironov, Vasily</au><au>Kastalskiy, Innokentiy</au><au>Kazantsev, Victor</au><au>Thuróczy, György</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Neuromuscular Interface for Robotic Devices Control</atitle><jtitle>Computational and mathematical methods in medicine</jtitle><addtitle>Comput Math Methods Med</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>2018</volume><issue>2018</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1748-670X</issn><eissn>1748-6718</eissn><abstract>A neuromuscular interface (NI) that can be employed to operate external robotic devices (RD), including commercial ones, was proposed. Multichannel electromyographic (EMG) signal is used in the control loop. Control signal can also be supplemented with electroencephalography (EEG), limb kinematics, or other modalities. The multiple electrode approach takes advantage of the massive resources of the human brain for solving nontrivial tasks, such as movement coordination. Multilayer artificial neural network was used for feature classification and further to provide command and/or proportional control of three robotic devices. The possibility of using biofeedback can compensate for control errors and implement a fundamentally important feature that has previously limited the development of intelligent exoskeletons, prostheses, and other medical devices. The control system can be integrated with wearable electronics. Examples of technical devices under control of the neuromuscular interface (NI) are presented.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>30140303</pmid><doi>10.1155/2018/8948145</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6050-4356</orcidid><orcidid>https://orcid.org/0000-0002-5088-0902</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1748-670X
ispartof Computational and mathematical methods in medicine, 2018-01, Vol.2018 (2018), p.1-8
issn 1748-670X
1748-6718
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6081556
source Wiley Online Library Open Access
subjects Biomechanical Phenomena
Electroencephalography
Humans
Movement
Neural Networks (Computer)
Robotic Surgical Procedures
User-Computer Interface
title A Neuromuscular Interface for Robotic Devices Control
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T02%3A55%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Neuromuscular%20Interface%20for%20Robotic%20Devices%20Control&rft.jtitle=Computational%20and%20mathematical%20methods%20in%20medicine&rft.au=Pimashkin,%20Alexey&rft.date=2018-01-01&rft.volume=2018&rft.issue=2018&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1748-670X&rft.eissn=1748-6718&rft_id=info:doi/10.1155/2018/8948145&rft_dat=%3Cproquest_pubme%3E2093311869%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c443t-45556ead36e6b8dba80e3072f2f65030b7b3950576d305f584afb0aa578fe11d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2093311869&rft_id=info:pmid/30140303&rfr_iscdi=true