Loading…
Effect of carbon black addition on thermal stability and capacitive performances of supercapacitors
In this study, we propose a simple way to improve thermal stability of solid-state supercapacitors (SCs) by adding carbon black (CB) into reduced graphene oxide (rGO) electrodes. The CB used as a heat-resistant additive contributes to stable operation of the rGO-CB SC even after 1000 charge/discharg...
Saved in:
Published in: | Scientific reports 2018-08, Vol.8 (1), p.11989-7, Article 11989 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, we propose a simple way to improve thermal stability of solid-state supercapacitors (SCs) by adding carbon black (CB) into reduced graphene oxide (rGO) electrodes. The CB used as a heat-resistant additive contributes to stable operation of the rGO-CB SC even after 1000 charge/discharge cycles at 90 °C. In the case of the rGO SC without CB, it fails after the 166th cycles at 90 °C. Compared with the rGO SC, the rGO-CB SC exhibits the decrease in internal resistance from 42 to 18 Ω and the increase in specific capacitance from 115 to 160 F/g. Moreover, the rGO-CB SC shows a smaller variation in specific capacitance (12%) than that of rGO SC (30%) as the temperature increases from 30 to 90 °C. The observation reveals that the addition of CB being a heat-resistant additive helps improve performance of thermal stable SCs. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-018-30507-5 |