Loading…
Telomere uncapping and vascular aging
Although most telomere biology research continues to focus on telomere shortening, there is increasing evidence that telomere deprotection, or "uncapping," is more biologically and possibly clinically important. Telomeres form t-loops to prevent the chromosome ends from appearing as a doub...
Saved in:
Published in: | American journal of physiology. Heart and circulatory physiology 2018-07, Vol.315 (1), p.H1-H5 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Although most telomere biology research continues to focus on telomere shortening, there is increasing evidence that telomere deprotection, or "uncapping," is more biologically and possibly clinically important. Telomeres form t-loops to prevent the chromosome ends from appearing as a double-stranded DNA break and initiating a DNA damage response. Breakdown of the t-loop structure, referred to as uncapping, can lead to cellular senescence, increased oxidative stress, and inflammation in tissues. In this review, we describe how telomere uncapping potentially leads to age-related vascular dysfunction and increased cellular senescence, oxidative stress, and inflammation. Importantly, we present evidence to argue that telomere uncapping is more biologically relevant than telomere shortening and a better marker of vascular aging and target for antiaging interventions. |
---|---|
ISSN: | 0363-6135 1522-1539 |
DOI: | 10.1152/ajpheart.00008.2018 |