Loading…

The impact of SPARC on age-related cardiac dysfunction and fibrosis in Drosophila

Tissue fibrosis, an accumulation of extracellular matrix proteins such as collagen, accompanies cardiac ageing in humans and this is linked to an increased risk of cardiac failure. The mechanisms driving age-related tissue fibrosis and cardiac dysfunction are unclear, yet clinically important. Droso...

Full description

Saved in:
Bibliographic Details
Published in:Experimental gerontology 2018-08, Vol.109, p.59-66
Main Authors: Vaughan, Leigh, Marley, Richard, Miellet, Sara, Hartley, Paul S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Tissue fibrosis, an accumulation of extracellular matrix proteins such as collagen, accompanies cardiac ageing in humans and this is linked to an increased risk of cardiac failure. The mechanisms driving age-related tissue fibrosis and cardiac dysfunction are unclear, yet clinically important. Drosophila is amenable to the study of cardiac ageing as well as collagen deposition; however it is unclear whether collagen accumulates in the ageing Drosophila heart. This work examined collagen deposition and cardiac function in ageing Drosophila, in the context of reduced expression of collagen-interacting protein SPARC (Secreted Protein Acidic and Rich in Cysteine) an evolutionarily conserved protein linked with fibrosis. Heart function was measured using high frame rate videomicroscopy. Collagen deposition was monitored using a fluorescently-tagged collagen IV reporter (encoded by the Viking gene) and staining of the cardiac collagen, Pericardin. The Drosophila heart accumulated collagen IV and Pericardin as flies aged. Associated with this was a decline in cardiac function. SPARC heterozygous flies lived longer than controls and showed little to no age-related cardiac dysfunction. As flies of both genotypes aged, cardiac levels of collagen IV (Viking) and Pericardin increased similarly. Over-expression of SPARC caused cardiomyopathy and increased Pericardin deposition. The findings demonstrate that, like humans, the Drosophila heart develops a fibrosis-like phenotype as it ages. Although having no gross impact on collagen accumulation, reduced SPARC expression extended Drosophila lifespan and cardiac health span. It is proposed that cardiac fibrosis in humans may develop due to the activation of conserved mechanisms and that SPARC may mediate cardiac ageing by mechanisms more subtle than gross accumulation of collagen. •The ageing Drosophila heart accumulates collagens (Viking and Pericardin).•This fibrosis-like phenotype accompanied age-dependent cardiac dysfunction.•Reduced expression of the collagen-interacting protein SPARC prevented the age-related cardiac dysfunction.•SPARC overexpression in nephrocytes drives cardiomyopathy and Pericardin deposition.•Reduced SPARC did not prevent collagen accumulation in the ageing heart.
ISSN:0531-5565
1873-6815
DOI:10.1016/j.exger.2017.10.011