Loading…

Crystal structure of highly glycosylated human leukocyte elastase in complex with an S2′ site binding inhibitor

Glycosylated human leukocyte elastase (HLE) was crystallized and structurally analysed in complex with a 1,3‐thiazolidine‐2,4‐dione derivative that had been identified as an HLE inhibitor in preliminary studies. In contrast to previously described HLE structures with small‐molecule inhibitors, in th...

Full description

Saved in:
Bibliographic Details
Published in:Acta crystallographica. Section F, Structural biology communications Structural biology communications, 2018-08, Vol.74 (8), p.480-489
Main Authors: Hochscherf, Jennifer, Pietsch, Markus, Tieu, William, Kuan, Kevin, Abell, Andrew D., Gütschow, Michael, Niefind, Karsten
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4071-bc7e5ffd3aabe97c4fc1e2127b4ccda694cf54c893dd9a7efa3f8567af1c47e93
cites cdi_FETCH-LOGICAL-c4071-bc7e5ffd3aabe97c4fc1e2127b4ccda694cf54c893dd9a7efa3f8567af1c47e93
container_end_page 489
container_issue 8
container_start_page 480
container_title Acta crystallographica. Section F, Structural biology communications
container_volume 74
creator Hochscherf, Jennifer
Pietsch, Markus
Tieu, William
Kuan, Kevin
Abell, Andrew D.
Gütschow, Michael
Niefind, Karsten
description Glycosylated human leukocyte elastase (HLE) was crystallized and structurally analysed in complex with a 1,3‐thiazolidine‐2,4‐dione derivative that had been identified as an HLE inhibitor in preliminary studies. In contrast to previously described HLE structures with small‐molecule inhibitors, in this structure the inhibitor does not bind to the S1 and S2 substrate‐recognition sites; rather, this is the first HLE structure with a synthetic inhibitor in which the S2′ site is blocked that normally binds the second side chain at the C‐terminal side of the scissile peptide bond in a substrate protein. The inhibitor also induces the formation of crystalline HLE dimers that block access to the active sites and that are also predicted to be stable in solution. Neither such HLE dimers nor the corresponding crystal packing have been observed in previous HLE crystal structures. This novel crystalline environment contributes to the observation that comparatively large parts of the N‐glycan chains of HLE are defined by electron density. The final HLE structure contains the largest structurally defined carbohydrate trees among currently available HLE structures. A novel binding mode of a small‐molecule inhibitor of human leukocyte elastase is revealed by its co‐crystal structure with the enzyme. In the structure, a comparatively large part of the N‐glycan chains attached to the enzyme are visible.
doi_str_mv 10.1107/S2053230X1800537X
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6096481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2084914270</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4071-bc7e5ffd3aabe97c4fc1e2127b4ccda694cf54c893dd9a7efa3f8567af1c47e93</originalsourceid><addsrcrecordid>eNqFksFuFSEUhonR2Kb2AdwYEjduboWBuQwbk-amtU2amFhN6oowzOEOlRlugbHOzmfykXwSud7aVF244uTw_X_O4Qeh55QcUUrE68uK1Kxi5Io2pFTi6hHa37YW297jB_UeOkzpmhCylVEhn6I9RkjDmRT76GYV55S1xynHyeQpAg4W927d-xmv_WxCmr3O0OF-GvSIPUyfg5kzYPC6CBNgN2ITho2Hr_jW5R4X6rL68e07Tq5grRs7N64L1bvW5RCfoSdW-wSHd-cB-nh68mF1trh49_Z8dXyxMLyMuWiNgNrajmndghSGW0OhopVouTGdXkpubM1NI1nXSS3Aamabeim0pYYLkOwAvdn5bqZ2gM7AmKP2ahPdoOOsgnbqz5vR9WodvqglkUve0GLw6s4ghpsJUlaDSwa81yOEKamqvKGkvBKkoC__Qq_DFMey3i-KcUGrulB0R5kYUopg74ehRG3DUf9kWjQvHm5xr_idYAHkDrh1Hub_O6rjT6fV-fu6fAf2ExqXsZ0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084347125</pqid></control><display><type>article</type><title>Crystal structure of highly glycosylated human leukocyte elastase in complex with an S2′ site binding inhibitor</title><source>Wiley</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Hochscherf, Jennifer ; Pietsch, Markus ; Tieu, William ; Kuan, Kevin ; Abell, Andrew D. ; Gütschow, Michael ; Niefind, Karsten</creator><creatorcontrib>Hochscherf, Jennifer ; Pietsch, Markus ; Tieu, William ; Kuan, Kevin ; Abell, Andrew D. ; Gütschow, Michael ; Niefind, Karsten</creatorcontrib><description>Glycosylated human leukocyte elastase (HLE) was crystallized and structurally analysed in complex with a 1,3‐thiazolidine‐2,4‐dione derivative that had been identified as an HLE inhibitor in preliminary studies. In contrast to previously described HLE structures with small‐molecule inhibitors, in this structure the inhibitor does not bind to the S1 and S2 substrate‐recognition sites; rather, this is the first HLE structure with a synthetic inhibitor in which the S2′ site is blocked that normally binds the second side chain at the C‐terminal side of the scissile peptide bond in a substrate protein. The inhibitor also induces the formation of crystalline HLE dimers that block access to the active sites and that are also predicted to be stable in solution. Neither such HLE dimers nor the corresponding crystal packing have been observed in previous HLE crystal structures. This novel crystalline environment contributes to the observation that comparatively large parts of the N‐glycan chains of HLE are defined by electron density. The final HLE structure contains the largest structurally defined carbohydrate trees among currently available HLE structures. A novel binding mode of a small‐molecule inhibitor of human leukocyte elastase is revealed by its co‐crystal structure with the enzyme. In the structure, a comparatively large part of the N‐glycan chains attached to the enzyme are visible.</description><identifier>ISSN: 2053-230X</identifier><identifier>EISSN: 2053-230X</identifier><identifier>DOI: 10.1107/S2053230X1800537X</identifier><identifier>PMID: 30084397</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>Amino Acid Sequence ; Binding Sites - physiology ; Carbohydrates ; Chain scission ; Chains ; Crystal structure ; Crystallinity ; Crystallization ; Crystallography, X-Ray - methods ; Dimers ; Elastase ; Electron density ; Enzyme Inhibitors - chemistry ; Enzyme Inhibitors - metabolism ; Enzyme Inhibitors - pharmacology ; Glycan ; Glycosylation ; human leukocyte elastase ; human neutrophil elastase ; Humans ; hydrolases ; Inhibitors ; Leukocyte elastase ; Leukocyte Elastase - antagonists &amp; inhibitors ; Leukocyte Elastase - chemistry ; Leukocyte Elastase - metabolism ; Leukocytes ; Molecular structure ; N‐glycosylation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Proteins ; Research Communications ; S2′ site ; Substrate inhibition ; Substrate Specificity - physiology ; Substrates</subject><ispartof>Acta crystallographica. Section F, Structural biology communications, 2018-08, Vol.74 (8), p.480-489</ispartof><rights>International Union of Crystallography, 2018</rights><rights>Copyright Wiley Subscription Services, Inc. Aug 2018</rights><rights>International Union of Crystallography 2018 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4071-bc7e5ffd3aabe97c4fc1e2127b4ccda694cf54c893dd9a7efa3f8567af1c47e93</citedby><cites>FETCH-LOGICAL-c4071-bc7e5ffd3aabe97c4fc1e2127b4ccda694cf54c893dd9a7efa3f8567af1c47e93</cites><orcidid>0000-0002-0183-6315 ; 0000-0002-4412-7391</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6096481/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6096481/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30084397$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hochscherf, Jennifer</creatorcontrib><creatorcontrib>Pietsch, Markus</creatorcontrib><creatorcontrib>Tieu, William</creatorcontrib><creatorcontrib>Kuan, Kevin</creatorcontrib><creatorcontrib>Abell, Andrew D.</creatorcontrib><creatorcontrib>Gütschow, Michael</creatorcontrib><creatorcontrib>Niefind, Karsten</creatorcontrib><title>Crystal structure of highly glycosylated human leukocyte elastase in complex with an S2′ site binding inhibitor</title><title>Acta crystallographica. Section F, Structural biology communications</title><addtitle>Acta Crystallogr F Struct Biol Commun</addtitle><description>Glycosylated human leukocyte elastase (HLE) was crystallized and structurally analysed in complex with a 1,3‐thiazolidine‐2,4‐dione derivative that had been identified as an HLE inhibitor in preliminary studies. In contrast to previously described HLE structures with small‐molecule inhibitors, in this structure the inhibitor does not bind to the S1 and S2 substrate‐recognition sites; rather, this is the first HLE structure with a synthetic inhibitor in which the S2′ site is blocked that normally binds the second side chain at the C‐terminal side of the scissile peptide bond in a substrate protein. The inhibitor also induces the formation of crystalline HLE dimers that block access to the active sites and that are also predicted to be stable in solution. Neither such HLE dimers nor the corresponding crystal packing have been observed in previous HLE crystal structures. This novel crystalline environment contributes to the observation that comparatively large parts of the N‐glycan chains of HLE are defined by electron density. The final HLE structure contains the largest structurally defined carbohydrate trees among currently available HLE structures. A novel binding mode of a small‐molecule inhibitor of human leukocyte elastase is revealed by its co‐crystal structure with the enzyme. In the structure, a comparatively large part of the N‐glycan chains attached to the enzyme are visible.</description><subject>Amino Acid Sequence</subject><subject>Binding Sites - physiology</subject><subject>Carbohydrates</subject><subject>Chain scission</subject><subject>Chains</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Crystallization</subject><subject>Crystallography, X-Ray - methods</subject><subject>Dimers</subject><subject>Elastase</subject><subject>Electron density</subject><subject>Enzyme Inhibitors - chemistry</subject><subject>Enzyme Inhibitors - metabolism</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Glycan</subject><subject>Glycosylation</subject><subject>human leukocyte elastase</subject><subject>human neutrophil elastase</subject><subject>Humans</subject><subject>hydrolases</subject><subject>Inhibitors</subject><subject>Leukocyte elastase</subject><subject>Leukocyte Elastase - antagonists &amp; inhibitors</subject><subject>Leukocyte Elastase - chemistry</subject><subject>Leukocyte Elastase - metabolism</subject><subject>Leukocytes</subject><subject>Molecular structure</subject><subject>N‐glycosylation</subject><subject>Protein Structure, Secondary</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins</subject><subject>Research Communications</subject><subject>S2′ site</subject><subject>Substrate inhibition</subject><subject>Substrate Specificity - physiology</subject><subject>Substrates</subject><issn>2053-230X</issn><issn>2053-230X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFksFuFSEUhonR2Kb2AdwYEjduboWBuQwbk-amtU2amFhN6oowzOEOlRlugbHOzmfykXwSud7aVF244uTw_X_O4Qeh55QcUUrE68uK1Kxi5Io2pFTi6hHa37YW297jB_UeOkzpmhCylVEhn6I9RkjDmRT76GYV55S1xynHyeQpAg4W927d-xmv_WxCmr3O0OF-GvSIPUyfg5kzYPC6CBNgN2ITho2Hr_jW5R4X6rL68e07Tq5grRs7N64L1bvW5RCfoSdW-wSHd-cB-nh68mF1trh49_Z8dXyxMLyMuWiNgNrajmndghSGW0OhopVouTGdXkpubM1NI1nXSS3Aamabeim0pYYLkOwAvdn5bqZ2gM7AmKP2ahPdoOOsgnbqz5vR9WodvqglkUve0GLw6s4ghpsJUlaDSwa81yOEKamqvKGkvBKkoC__Qq_DFMey3i-KcUGrulB0R5kYUopg74ehRG3DUf9kWjQvHm5xr_idYAHkDrh1Hub_O6rjT6fV-fu6fAf2ExqXsZ0</recordid><startdate>201808</startdate><enddate>201808</enddate><creator>Hochscherf, Jennifer</creator><creator>Pietsch, Markus</creator><creator>Tieu, William</creator><creator>Kuan, Kevin</creator><creator>Abell, Andrew D.</creator><creator>Gütschow, Michael</creator><creator>Niefind, Karsten</creator><general>International Union of Crystallography</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0183-6315</orcidid><orcidid>https://orcid.org/0000-0002-4412-7391</orcidid></search><sort><creationdate>201808</creationdate><title>Crystal structure of highly glycosylated human leukocyte elastase in complex with an S2′ site binding inhibitor</title><author>Hochscherf, Jennifer ; Pietsch, Markus ; Tieu, William ; Kuan, Kevin ; Abell, Andrew D. ; Gütschow, Michael ; Niefind, Karsten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4071-bc7e5ffd3aabe97c4fc1e2127b4ccda694cf54c893dd9a7efa3f8567af1c47e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Amino Acid Sequence</topic><topic>Binding Sites - physiology</topic><topic>Carbohydrates</topic><topic>Chain scission</topic><topic>Chains</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Crystallization</topic><topic>Crystallography, X-Ray - methods</topic><topic>Dimers</topic><topic>Elastase</topic><topic>Electron density</topic><topic>Enzyme Inhibitors - chemistry</topic><topic>Enzyme Inhibitors - metabolism</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Glycan</topic><topic>Glycosylation</topic><topic>human leukocyte elastase</topic><topic>human neutrophil elastase</topic><topic>Humans</topic><topic>hydrolases</topic><topic>Inhibitors</topic><topic>Leukocyte elastase</topic><topic>Leukocyte Elastase - antagonists &amp; inhibitors</topic><topic>Leukocyte Elastase - chemistry</topic><topic>Leukocyte Elastase - metabolism</topic><topic>Leukocytes</topic><topic>Molecular structure</topic><topic>N‐glycosylation</topic><topic>Protein Structure, Secondary</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins</topic><topic>Research Communications</topic><topic>S2′ site</topic><topic>Substrate inhibition</topic><topic>Substrate Specificity - physiology</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hochscherf, Jennifer</creatorcontrib><creatorcontrib>Pietsch, Markus</creatorcontrib><creatorcontrib>Tieu, William</creatorcontrib><creatorcontrib>Kuan, Kevin</creatorcontrib><creatorcontrib>Abell, Andrew D.</creatorcontrib><creatorcontrib>Gütschow, Michael</creatorcontrib><creatorcontrib>Niefind, Karsten</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Acta crystallographica. Section F, Structural biology communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hochscherf, Jennifer</au><au>Pietsch, Markus</au><au>Tieu, William</au><au>Kuan, Kevin</au><au>Abell, Andrew D.</au><au>Gütschow, Michael</au><au>Niefind, Karsten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystal structure of highly glycosylated human leukocyte elastase in complex with an S2′ site binding inhibitor</atitle><jtitle>Acta crystallographica. Section F, Structural biology communications</jtitle><addtitle>Acta Crystallogr F Struct Biol Commun</addtitle><date>2018-08</date><risdate>2018</risdate><volume>74</volume><issue>8</issue><spage>480</spage><epage>489</epage><pages>480-489</pages><issn>2053-230X</issn><eissn>2053-230X</eissn><abstract>Glycosylated human leukocyte elastase (HLE) was crystallized and structurally analysed in complex with a 1,3‐thiazolidine‐2,4‐dione derivative that had been identified as an HLE inhibitor in preliminary studies. In contrast to previously described HLE structures with small‐molecule inhibitors, in this structure the inhibitor does not bind to the S1 and S2 substrate‐recognition sites; rather, this is the first HLE structure with a synthetic inhibitor in which the S2′ site is blocked that normally binds the second side chain at the C‐terminal side of the scissile peptide bond in a substrate protein. The inhibitor also induces the formation of crystalline HLE dimers that block access to the active sites and that are also predicted to be stable in solution. Neither such HLE dimers nor the corresponding crystal packing have been observed in previous HLE crystal structures. This novel crystalline environment contributes to the observation that comparatively large parts of the N‐glycan chains of HLE are defined by electron density. The final HLE structure contains the largest structurally defined carbohydrate trees among currently available HLE structures. A novel binding mode of a small‐molecule inhibitor of human leukocyte elastase is revealed by its co‐crystal structure with the enzyme. In the structure, a comparatively large part of the N‐glycan chains attached to the enzyme are visible.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><pmid>30084397</pmid><doi>10.1107/S2053230X1800537X</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0183-6315</orcidid><orcidid>https://orcid.org/0000-0002-4412-7391</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2053-230X
ispartof Acta crystallographica. Section F, Structural biology communications, 2018-08, Vol.74 (8), p.480-489
issn 2053-230X
2053-230X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6096481
source Wiley; PubMed Central; Free Full-Text Journals in Chemistry
subjects Amino Acid Sequence
Binding Sites - physiology
Carbohydrates
Chain scission
Chains
Crystal structure
Crystallinity
Crystallization
Crystallography, X-Ray - methods
Dimers
Elastase
Electron density
Enzyme Inhibitors - chemistry
Enzyme Inhibitors - metabolism
Enzyme Inhibitors - pharmacology
Glycan
Glycosylation
human leukocyte elastase
human neutrophil elastase
Humans
hydrolases
Inhibitors
Leukocyte elastase
Leukocyte Elastase - antagonists & inhibitors
Leukocyte Elastase - chemistry
Leukocyte Elastase - metabolism
Leukocytes
Molecular structure
N‐glycosylation
Protein Structure, Secondary
Protein Structure, Tertiary
Proteins
Research Communications
S2′ site
Substrate inhibition
Substrate Specificity - physiology
Substrates
title Crystal structure of highly glycosylated human leukocyte elastase in complex with an S2′ site binding inhibitor
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T21%3A52%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystal%20structure%20of%20highly%20glycosylated%20human%20leukocyte%20elastase%20in%20complex%20with%20an%20S2%E2%80%B2%20site%20binding%20inhibitor&rft.jtitle=Acta%20crystallographica.%20Section%20F,%20Structural%20biology%20communications&rft.au=Hochscherf,%20Jennifer&rft.date=2018-08&rft.volume=74&rft.issue=8&rft.spage=480&rft.epage=489&rft.pages=480-489&rft.issn=2053-230X&rft.eissn=2053-230X&rft_id=info:doi/10.1107/S2053230X1800537X&rft_dat=%3Cproquest_pubme%3E2084914270%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4071-bc7e5ffd3aabe97c4fc1e2127b4ccda694cf54c893dd9a7efa3f8567af1c47e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2084347125&rft_id=info:pmid/30084397&rfr_iscdi=true