Loading…
Crystal structure of highly glycosylated human leukocyte elastase in complex with an S2′ site binding inhibitor
Glycosylated human leukocyte elastase (HLE) was crystallized and structurally analysed in complex with a 1,3‐thiazolidine‐2,4‐dione derivative that had been identified as an HLE inhibitor in preliminary studies. In contrast to previously described HLE structures with small‐molecule inhibitors, in th...
Saved in:
Published in: | Acta crystallographica. Section F, Structural biology communications Structural biology communications, 2018-08, Vol.74 (8), p.480-489 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4071-bc7e5ffd3aabe97c4fc1e2127b4ccda694cf54c893dd9a7efa3f8567af1c47e93 |
---|---|
cites | cdi_FETCH-LOGICAL-c4071-bc7e5ffd3aabe97c4fc1e2127b4ccda694cf54c893dd9a7efa3f8567af1c47e93 |
container_end_page | 489 |
container_issue | 8 |
container_start_page | 480 |
container_title | Acta crystallographica. Section F, Structural biology communications |
container_volume | 74 |
creator | Hochscherf, Jennifer Pietsch, Markus Tieu, William Kuan, Kevin Abell, Andrew D. Gütschow, Michael Niefind, Karsten |
description | Glycosylated human leukocyte elastase (HLE) was crystallized and structurally analysed in complex with a 1,3‐thiazolidine‐2,4‐dione derivative that had been identified as an HLE inhibitor in preliminary studies. In contrast to previously described HLE structures with small‐molecule inhibitors, in this structure the inhibitor does not bind to the S1 and S2 substrate‐recognition sites; rather, this is the first HLE structure with a synthetic inhibitor in which the S2′ site is blocked that normally binds the second side chain at the C‐terminal side of the scissile peptide bond in a substrate protein. The inhibitor also induces the formation of crystalline HLE dimers that block access to the active sites and that are also predicted to be stable in solution. Neither such HLE dimers nor the corresponding crystal packing have been observed in previous HLE crystal structures. This novel crystalline environment contributes to the observation that comparatively large parts of the N‐glycan chains of HLE are defined by electron density. The final HLE structure contains the largest structurally defined carbohydrate trees among currently available HLE structures.
A novel binding mode of a small‐molecule inhibitor of human leukocyte elastase is revealed by its co‐crystal structure with the enzyme. In the structure, a comparatively large part of the N‐glycan chains attached to the enzyme are visible. |
doi_str_mv | 10.1107/S2053230X1800537X |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6096481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2084914270</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4071-bc7e5ffd3aabe97c4fc1e2127b4ccda694cf54c893dd9a7efa3f8567af1c47e93</originalsourceid><addsrcrecordid>eNqFksFuFSEUhonR2Kb2AdwYEjduboWBuQwbk-amtU2amFhN6oowzOEOlRlugbHOzmfykXwSud7aVF244uTw_X_O4Qeh55QcUUrE68uK1Kxi5Io2pFTi6hHa37YW297jB_UeOkzpmhCylVEhn6I9RkjDmRT76GYV55S1xynHyeQpAg4W927d-xmv_WxCmr3O0OF-GvSIPUyfg5kzYPC6CBNgN2ITho2Hr_jW5R4X6rL68e07Tq5grRs7N64L1bvW5RCfoSdW-wSHd-cB-nh68mF1trh49_Z8dXyxMLyMuWiNgNrajmndghSGW0OhopVouTGdXkpubM1NI1nXSS3Aamabeim0pYYLkOwAvdn5bqZ2gM7AmKP2ahPdoOOsgnbqz5vR9WodvqglkUve0GLw6s4ghpsJUlaDSwa81yOEKamqvKGkvBKkoC__Qq_DFMey3i-KcUGrulB0R5kYUopg74ehRG3DUf9kWjQvHm5xr_idYAHkDrh1Hub_O6rjT6fV-fu6fAf2ExqXsZ0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084347125</pqid></control><display><type>article</type><title>Crystal structure of highly glycosylated human leukocyte elastase in complex with an S2′ site binding inhibitor</title><source>Wiley</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Hochscherf, Jennifer ; Pietsch, Markus ; Tieu, William ; Kuan, Kevin ; Abell, Andrew D. ; Gütschow, Michael ; Niefind, Karsten</creator><creatorcontrib>Hochscherf, Jennifer ; Pietsch, Markus ; Tieu, William ; Kuan, Kevin ; Abell, Andrew D. ; Gütschow, Michael ; Niefind, Karsten</creatorcontrib><description>Glycosylated human leukocyte elastase (HLE) was crystallized and structurally analysed in complex with a 1,3‐thiazolidine‐2,4‐dione derivative that had been identified as an HLE inhibitor in preliminary studies. In contrast to previously described HLE structures with small‐molecule inhibitors, in this structure the inhibitor does not bind to the S1 and S2 substrate‐recognition sites; rather, this is the first HLE structure with a synthetic inhibitor in which the S2′ site is blocked that normally binds the second side chain at the C‐terminal side of the scissile peptide bond in a substrate protein. The inhibitor also induces the formation of crystalline HLE dimers that block access to the active sites and that are also predicted to be stable in solution. Neither such HLE dimers nor the corresponding crystal packing have been observed in previous HLE crystal structures. This novel crystalline environment contributes to the observation that comparatively large parts of the N‐glycan chains of HLE are defined by electron density. The final HLE structure contains the largest structurally defined carbohydrate trees among currently available HLE structures.
A novel binding mode of a small‐molecule inhibitor of human leukocyte elastase is revealed by its co‐crystal structure with the enzyme. In the structure, a comparatively large part of the N‐glycan chains attached to the enzyme are visible.</description><identifier>ISSN: 2053-230X</identifier><identifier>EISSN: 2053-230X</identifier><identifier>DOI: 10.1107/S2053230X1800537X</identifier><identifier>PMID: 30084397</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>Amino Acid Sequence ; Binding Sites - physiology ; Carbohydrates ; Chain scission ; Chains ; Crystal structure ; Crystallinity ; Crystallization ; Crystallography, X-Ray - methods ; Dimers ; Elastase ; Electron density ; Enzyme Inhibitors - chemistry ; Enzyme Inhibitors - metabolism ; Enzyme Inhibitors - pharmacology ; Glycan ; Glycosylation ; human leukocyte elastase ; human neutrophil elastase ; Humans ; hydrolases ; Inhibitors ; Leukocyte elastase ; Leukocyte Elastase - antagonists & inhibitors ; Leukocyte Elastase - chemistry ; Leukocyte Elastase - metabolism ; Leukocytes ; Molecular structure ; N‐glycosylation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Proteins ; Research Communications ; S2′ site ; Substrate inhibition ; Substrate Specificity - physiology ; Substrates</subject><ispartof>Acta crystallographica. Section F, Structural biology communications, 2018-08, Vol.74 (8), p.480-489</ispartof><rights>International Union of Crystallography, 2018</rights><rights>Copyright Wiley Subscription Services, Inc. Aug 2018</rights><rights>International Union of Crystallography 2018 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4071-bc7e5ffd3aabe97c4fc1e2127b4ccda694cf54c893dd9a7efa3f8567af1c47e93</citedby><cites>FETCH-LOGICAL-c4071-bc7e5ffd3aabe97c4fc1e2127b4ccda694cf54c893dd9a7efa3f8567af1c47e93</cites><orcidid>0000-0002-0183-6315 ; 0000-0002-4412-7391</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6096481/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6096481/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30084397$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hochscherf, Jennifer</creatorcontrib><creatorcontrib>Pietsch, Markus</creatorcontrib><creatorcontrib>Tieu, William</creatorcontrib><creatorcontrib>Kuan, Kevin</creatorcontrib><creatorcontrib>Abell, Andrew D.</creatorcontrib><creatorcontrib>Gütschow, Michael</creatorcontrib><creatorcontrib>Niefind, Karsten</creatorcontrib><title>Crystal structure of highly glycosylated human leukocyte elastase in complex with an S2′ site binding inhibitor</title><title>Acta crystallographica. Section F, Structural biology communications</title><addtitle>Acta Crystallogr F Struct Biol Commun</addtitle><description>Glycosylated human leukocyte elastase (HLE) was crystallized and structurally analysed in complex with a 1,3‐thiazolidine‐2,4‐dione derivative that had been identified as an HLE inhibitor in preliminary studies. In contrast to previously described HLE structures with small‐molecule inhibitors, in this structure the inhibitor does not bind to the S1 and S2 substrate‐recognition sites; rather, this is the first HLE structure with a synthetic inhibitor in which the S2′ site is blocked that normally binds the second side chain at the C‐terminal side of the scissile peptide bond in a substrate protein. The inhibitor also induces the formation of crystalline HLE dimers that block access to the active sites and that are also predicted to be stable in solution. Neither such HLE dimers nor the corresponding crystal packing have been observed in previous HLE crystal structures. This novel crystalline environment contributes to the observation that comparatively large parts of the N‐glycan chains of HLE are defined by electron density. The final HLE structure contains the largest structurally defined carbohydrate trees among currently available HLE structures.
A novel binding mode of a small‐molecule inhibitor of human leukocyte elastase is revealed by its co‐crystal structure with the enzyme. In the structure, a comparatively large part of the N‐glycan chains attached to the enzyme are visible.</description><subject>Amino Acid Sequence</subject><subject>Binding Sites - physiology</subject><subject>Carbohydrates</subject><subject>Chain scission</subject><subject>Chains</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Crystallization</subject><subject>Crystallography, X-Ray - methods</subject><subject>Dimers</subject><subject>Elastase</subject><subject>Electron density</subject><subject>Enzyme Inhibitors - chemistry</subject><subject>Enzyme Inhibitors - metabolism</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Glycan</subject><subject>Glycosylation</subject><subject>human leukocyte elastase</subject><subject>human neutrophil elastase</subject><subject>Humans</subject><subject>hydrolases</subject><subject>Inhibitors</subject><subject>Leukocyte elastase</subject><subject>Leukocyte Elastase - antagonists & inhibitors</subject><subject>Leukocyte Elastase - chemistry</subject><subject>Leukocyte Elastase - metabolism</subject><subject>Leukocytes</subject><subject>Molecular structure</subject><subject>N‐glycosylation</subject><subject>Protein Structure, Secondary</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins</subject><subject>Research Communications</subject><subject>S2′ site</subject><subject>Substrate inhibition</subject><subject>Substrate Specificity - physiology</subject><subject>Substrates</subject><issn>2053-230X</issn><issn>2053-230X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFksFuFSEUhonR2Kb2AdwYEjduboWBuQwbk-amtU2amFhN6oowzOEOlRlugbHOzmfykXwSud7aVF244uTw_X_O4Qeh55QcUUrE68uK1Kxi5Io2pFTi6hHa37YW297jB_UeOkzpmhCylVEhn6I9RkjDmRT76GYV55S1xynHyeQpAg4W927d-xmv_WxCmr3O0OF-GvSIPUyfg5kzYPC6CBNgN2ITho2Hr_jW5R4X6rL68e07Tq5grRs7N64L1bvW5RCfoSdW-wSHd-cB-nh68mF1trh49_Z8dXyxMLyMuWiNgNrajmndghSGW0OhopVouTGdXkpubM1NI1nXSS3Aamabeim0pYYLkOwAvdn5bqZ2gM7AmKP2ahPdoOOsgnbqz5vR9WodvqglkUve0GLw6s4ghpsJUlaDSwa81yOEKamqvKGkvBKkoC__Qq_DFMey3i-KcUGrulB0R5kYUopg74ehRG3DUf9kWjQvHm5xr_idYAHkDrh1Hub_O6rjT6fV-fu6fAf2ExqXsZ0</recordid><startdate>201808</startdate><enddate>201808</enddate><creator>Hochscherf, Jennifer</creator><creator>Pietsch, Markus</creator><creator>Tieu, William</creator><creator>Kuan, Kevin</creator><creator>Abell, Andrew D.</creator><creator>Gütschow, Michael</creator><creator>Niefind, Karsten</creator><general>International Union of Crystallography</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0183-6315</orcidid><orcidid>https://orcid.org/0000-0002-4412-7391</orcidid></search><sort><creationdate>201808</creationdate><title>Crystal structure of highly glycosylated human leukocyte elastase in complex with an S2′ site binding inhibitor</title><author>Hochscherf, Jennifer ; Pietsch, Markus ; Tieu, William ; Kuan, Kevin ; Abell, Andrew D. ; Gütschow, Michael ; Niefind, Karsten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4071-bc7e5ffd3aabe97c4fc1e2127b4ccda694cf54c893dd9a7efa3f8567af1c47e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Amino Acid Sequence</topic><topic>Binding Sites - physiology</topic><topic>Carbohydrates</topic><topic>Chain scission</topic><topic>Chains</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Crystallization</topic><topic>Crystallography, X-Ray - methods</topic><topic>Dimers</topic><topic>Elastase</topic><topic>Electron density</topic><topic>Enzyme Inhibitors - chemistry</topic><topic>Enzyme Inhibitors - metabolism</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Glycan</topic><topic>Glycosylation</topic><topic>human leukocyte elastase</topic><topic>human neutrophil elastase</topic><topic>Humans</topic><topic>hydrolases</topic><topic>Inhibitors</topic><topic>Leukocyte elastase</topic><topic>Leukocyte Elastase - antagonists & inhibitors</topic><topic>Leukocyte Elastase - chemistry</topic><topic>Leukocyte Elastase - metabolism</topic><topic>Leukocytes</topic><topic>Molecular structure</topic><topic>N‐glycosylation</topic><topic>Protein Structure, Secondary</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins</topic><topic>Research Communications</topic><topic>S2′ site</topic><topic>Substrate inhibition</topic><topic>Substrate Specificity - physiology</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hochscherf, Jennifer</creatorcontrib><creatorcontrib>Pietsch, Markus</creatorcontrib><creatorcontrib>Tieu, William</creatorcontrib><creatorcontrib>Kuan, Kevin</creatorcontrib><creatorcontrib>Abell, Andrew D.</creatorcontrib><creatorcontrib>Gütschow, Michael</creatorcontrib><creatorcontrib>Niefind, Karsten</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Acta crystallographica. Section F, Structural biology communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hochscherf, Jennifer</au><au>Pietsch, Markus</au><au>Tieu, William</au><au>Kuan, Kevin</au><au>Abell, Andrew D.</au><au>Gütschow, Michael</au><au>Niefind, Karsten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystal structure of highly glycosylated human leukocyte elastase in complex with an S2′ site binding inhibitor</atitle><jtitle>Acta crystallographica. Section F, Structural biology communications</jtitle><addtitle>Acta Crystallogr F Struct Biol Commun</addtitle><date>2018-08</date><risdate>2018</risdate><volume>74</volume><issue>8</issue><spage>480</spage><epage>489</epage><pages>480-489</pages><issn>2053-230X</issn><eissn>2053-230X</eissn><abstract>Glycosylated human leukocyte elastase (HLE) was crystallized and structurally analysed in complex with a 1,3‐thiazolidine‐2,4‐dione derivative that had been identified as an HLE inhibitor in preliminary studies. In contrast to previously described HLE structures with small‐molecule inhibitors, in this structure the inhibitor does not bind to the S1 and S2 substrate‐recognition sites; rather, this is the first HLE structure with a synthetic inhibitor in which the S2′ site is blocked that normally binds the second side chain at the C‐terminal side of the scissile peptide bond in a substrate protein. The inhibitor also induces the formation of crystalline HLE dimers that block access to the active sites and that are also predicted to be stable in solution. Neither such HLE dimers nor the corresponding crystal packing have been observed in previous HLE crystal structures. This novel crystalline environment contributes to the observation that comparatively large parts of the N‐glycan chains of HLE are defined by electron density. The final HLE structure contains the largest structurally defined carbohydrate trees among currently available HLE structures.
A novel binding mode of a small‐molecule inhibitor of human leukocyte elastase is revealed by its co‐crystal structure with the enzyme. In the structure, a comparatively large part of the N‐glycan chains attached to the enzyme are visible.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><pmid>30084397</pmid><doi>10.1107/S2053230X1800537X</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0183-6315</orcidid><orcidid>https://orcid.org/0000-0002-4412-7391</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2053-230X |
ispartof | Acta crystallographica. Section F, Structural biology communications, 2018-08, Vol.74 (8), p.480-489 |
issn | 2053-230X 2053-230X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6096481 |
source | Wiley; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Amino Acid Sequence Binding Sites - physiology Carbohydrates Chain scission Chains Crystal structure Crystallinity Crystallization Crystallography, X-Ray - methods Dimers Elastase Electron density Enzyme Inhibitors - chemistry Enzyme Inhibitors - metabolism Enzyme Inhibitors - pharmacology Glycan Glycosylation human leukocyte elastase human neutrophil elastase Humans hydrolases Inhibitors Leukocyte elastase Leukocyte Elastase - antagonists & inhibitors Leukocyte Elastase - chemistry Leukocyte Elastase - metabolism Leukocytes Molecular structure N‐glycosylation Protein Structure, Secondary Protein Structure, Tertiary Proteins Research Communications S2′ site Substrate inhibition Substrate Specificity - physiology Substrates |
title | Crystal structure of highly glycosylated human leukocyte elastase in complex with an S2′ site binding inhibitor |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T21%3A52%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystal%20structure%20of%20highly%20glycosylated%20human%20leukocyte%20elastase%20in%20complex%20with%20an%20S2%E2%80%B2%20site%20binding%20inhibitor&rft.jtitle=Acta%20crystallographica.%20Section%20F,%20Structural%20biology%20communications&rft.au=Hochscherf,%20Jennifer&rft.date=2018-08&rft.volume=74&rft.issue=8&rft.spage=480&rft.epage=489&rft.pages=480-489&rft.issn=2053-230X&rft.eissn=2053-230X&rft_id=info:doi/10.1107/S2053230X1800537X&rft_dat=%3Cproquest_pubme%3E2084914270%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4071-bc7e5ffd3aabe97c4fc1e2127b4ccda694cf54c893dd9a7efa3f8567af1c47e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2084347125&rft_id=info:pmid/30084397&rfr_iscdi=true |