Loading…

Highly Adaptable and Biocompatible Octopus‐Like Adhesive Patches with Meniscus‐Controlled Unfoldable 3D Microtips for Underwater Surface and Hairy Skin

Adhesion capabilities of various skin architectures found in nature can generate remarkable physical interactions with their engaged surfaces. Among them, octopus suckers have unique hierarchical structures for reversible adhesion in dry and wet conditions. Here, highly adaptable, biocompatible, and...

Full description

Saved in:
Bibliographic Details
Published in:Advanced science 2018-08, Vol.5 (8), p.1800100-n/a
Main Authors: Baik, Sangyul, Kim, Jiwon, Lee, Heon Joon, Lee, Tae Hoon, Pang, Changhyun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Adhesion capabilities of various skin architectures found in nature can generate remarkable physical interactions with their engaged surfaces. Among them, octopus suckers have unique hierarchical structures for reversible adhesion in dry and wet conditions. Here, highly adaptable, biocompatible, and repeatable adhesive patches with unfoldable, 3D microtips in micropillars inspired by the rim and infundibulum of octopus suction cup are presented. The bioinspired synthetic adhesives are fabricated by controlling the meniscus of a liquid precursor in a simple molding process without any hierarchical assemblies or additional surface treatments. Experimental and theoretical studies are investigated upon to increase the effective contact area between unfoldable microtips of devices, and enhance adhesion performances and adaptability on a Si wafer in both dry and underwater conditions (max. 11 N cm−2 in pull‐off strength) as well as on a moist pigskin (max. 14.6 mJ peeling energy). Moreover, the geometry‐controlled microsuckers exhibit high‐repeatability (over 100 cycles) in a pull‐off direction. The adhesive demonstrates stable attachments on a moist, hairy, and rough skin, without any observable chemical residues. Octopus‐like adhesives with meniscus‐controlled unfoldable 3D microtips are fabricated by controlling the meniscus of a precursor during simple molding process. The octopus‐like adhesives show strong dry/wet adhesion performance against silicon wafers and rough hairy skin. The idea may bring forth the development of versatile applications such as clean, conformal patches for wound‐healing, and smart skin/organ‐attachable medical devices.
ISSN:2198-3844
2198-3844
DOI:10.1002/advs.201800100