Loading…
Self-folding of supramolecular polymers into bioinspired topology
Folding one-dimensional polymer chains into well-defined topologies represents an important organization process for proteins, but replicating this process for supramolecular polymers remains a challenging task. We report supramolecular polymers that can fold into protein-like topologies. Our approa...
Saved in:
Published in: | Science advances 2018-09, Vol.4 (9), p.eaat8466-eaat8466 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Folding one-dimensional polymer chains into well-defined topologies represents an important organization process for proteins, but replicating this process for supramolecular polymers remains a challenging task. We report supramolecular polymers that can fold into protein-like topologies. Our approach is based on curvature-forming supramolecular rosettes, which affords kinetic control over the extent of helical folding in the resulting supramolecular fibers by changing the cooling rate for polymerization. When using a slow cooling rate, we obtained misfolded fibers containing a minor amount of helical domains that folded on a time scale of days into unique topologies reminiscent of the protein tertiary structures. Thermodynamic analysis of fibers with varying degrees of folding revealed that the folding is accompanied by a large enthalpic gain. The self-folding proceeds via ordering of misfolded domains in the main chain using helical domains as templates, as fully misfolded fibers prepared by a fast cooling rate do not self-fold. |
---|---|
ISSN: | 2375-2548 2375-2548 |
DOI: | 10.1126/sciadv.aat8466 |