Loading…
Polyprotein strategy for stoichiometric assembly of nitrogen fixation components for synthetic biology
Re-engineering of complex biological systems (CBS) is an important goal for applications in synthetic biology. Efforts have beenmade to simplify CBS by refactoring a large number of genes with rearranged polycistrons and synthetic regulatory circuits. Here, a posttranslational protein-splicing strat...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2018-09, Vol.115 (36), p.E8509-E8517 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c443t-58d0eadb61cc390bad6531e497c18ce421b3e1dd8a4f5f71b24984b08d20b62d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c443t-58d0eadb61cc390bad6531e497c18ce421b3e1dd8a4f5f71b24984b08d20b62d3 |
container_end_page | E8517 |
container_issue | 36 |
container_start_page | E8509 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 115 |
creator | Yang, Jianguo Xie, Xiaqing Xiang, Nan Tian, Zhe-Xian Dixon, Ray Wang, Yi-Ping |
description | Re-engineering of complex biological systems (CBS) is an important goal for applications in synthetic biology. Efforts have beenmade to simplify CBS by refactoring a large number of genes with rearranged polycistrons and synthetic regulatory circuits. Here, a posttranslational protein-splicing strategy derived from RNA viruses was exploited to minimize gene numbers of the classic nitrogenase system, where the expression stoichiometry is particularly important. Operon-based nif genes from Klebsiella oxytoca were regrouped into giant genes either by fusing genes together or by expressing polyproteins that are subsequently cleaved with Tobacco Etch Virus protease. After several rounds of selection based on protein expression levels and tolerance toward a remnant C-terminal ENLYFQ-tail, a system with only five giant genes showed optimal nitrogenase activity and supported diazotrophic growth of Escherichia coli. This study provides an approach for efficient translation from an operon-based system into a polyprotein-based assembly that has the potential for portable and stoichiometric expression of the complex nitrogenase system in eukaryotic organisms. |
doi_str_mv | 10.1073/pnas.1804992115 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6130400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26531251</jstor_id><sourcerecordid>26531251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-58d0eadb61cc390bad6531e497c18ce421b3e1dd8a4f5f71b24984b08d20b62d3</originalsourceid><addsrcrecordid>eNpdkctv1DAQhy0EotvCmRMoEpde0o4fyToXJFTxkirBAc6W7Ti7XiWeYHsR-e9xtGV5nCxrvt9oZj5CXlC4obDlt3PQ6YZKEF3HKG0ekQ2Fjtat6OAx2QCwbS0FExfkMqUDAHSNhKfkggO0lMtuQ4YvOC5zxOx8qFKOOrvdUg0Yywe93XucXI7eVjolN5lxqXCogs8Rdy5Ug_-ps8dQWZxmDC7kdMouIe9dLjHjccTd8ow8GfSY3POH94p8e__u693H-v7zh093b-9rKwTPdSN7cLo3LbWWd2B03zacOtFtLZXWCUYNd7TvpRZDM2ypYaKTwoDsGZiW9fyKvDn1nY9mcr0tE0U9qjn6ScdFofbq30rwe7XDH6qcAwRAaXD90CDi96NLWU0-WTeOOjg8JsVAghTA2hV9_R96wGMMZT1VXIAoSLNStyfKRkwpuuE8DAW1OlSrQ_XHYUm8-nuHM_9bWgFenoBDcRTPdbbeijWU_wJl2aUg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2110460350</pqid></control><display><type>article</type><title>Polyprotein strategy for stoichiometric assembly of nitrogen fixation components for synthetic biology</title><source>Open Access: PubMed Central</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Yang, Jianguo ; Xie, Xiaqing ; Xiang, Nan ; Tian, Zhe-Xian ; Dixon, Ray ; Wang, Yi-Ping</creator><creatorcontrib>Yang, Jianguo ; Xie, Xiaqing ; Xiang, Nan ; Tian, Zhe-Xian ; Dixon, Ray ; Wang, Yi-Ping</creatorcontrib><description>Re-engineering of complex biological systems (CBS) is an important goal for applications in synthetic biology. Efforts have beenmade to simplify CBS by refactoring a large number of genes with rearranged polycistrons and synthetic regulatory circuits. Here, a posttranslational protein-splicing strategy derived from RNA viruses was exploited to minimize gene numbers of the classic nitrogenase system, where the expression stoichiometry is particularly important. Operon-based nif genes from Klebsiella oxytoca were regrouped into giant genes either by fusing genes together or by expressing polyproteins that are subsequently cleaved with Tobacco Etch Virus protease. After several rounds of selection based on protein expression levels and tolerance toward a remnant C-terminal ENLYFQ-tail, a system with only five giant genes showed optimal nitrogenase activity and supported diazotrophic growth of Escherichia coli. This study provides an approach for efficient translation from an operon-based system into a polyprotein-based assembly that has the potential for portable and stoichiometric expression of the complex nitrogenase system in eukaryotic organisms.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1804992115</identifier><identifier>PMID: 30061389</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Assembly ; Bacterial Proteins - biosynthesis ; Bacterial Proteins - genetics ; Biological Sciences ; Biology ; Biosynthesis ; E coli ; Endopeptidases - genetics ; Endopeptidases - metabolism ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Gene expression ; Genes ; Klebsiella ; Klebsiella oxytoca - genetics ; Microorganisms, Genetically-Modified - genetics ; Microorganisms, Genetically-Modified - metabolism ; Nitrogen Fixation ; Nitrogenase ; Operon ; PNAS Plus ; Polyproteins ; Polyproteins - biosynthesis ; Polyproteins - genetics ; Protein expression ; Proteins ; Reengineering ; Ribonucleic acid ; RNA ; RNA viruses ; SEE COMMENTARY ; Splicing ; Stoichiometry ; Synthetic biology ; Tobacco ; Viruses</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2018-09, Vol.115 (36), p.E8509-E8517</ispartof><rights>Volumes 1–89 and 106–115, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright © 2018 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Sep 4, 2018</rights><rights>Copyright © 2018 the Author(s). Published by PNAS. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-58d0eadb61cc390bad6531e497c18ce421b3e1dd8a4f5f71b24984b08d20b62d3</citedby><cites>FETCH-LOGICAL-c443t-58d0eadb61cc390bad6531e497c18ce421b3e1dd8a4f5f71b24984b08d20b62d3</cites><orcidid>0000-0002-6348-639X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26531251$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26531251$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30061389$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Jianguo</creatorcontrib><creatorcontrib>Xie, Xiaqing</creatorcontrib><creatorcontrib>Xiang, Nan</creatorcontrib><creatorcontrib>Tian, Zhe-Xian</creatorcontrib><creatorcontrib>Dixon, Ray</creatorcontrib><creatorcontrib>Wang, Yi-Ping</creatorcontrib><title>Polyprotein strategy for stoichiometric assembly of nitrogen fixation components for synthetic biology</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Re-engineering of complex biological systems (CBS) is an important goal for applications in synthetic biology. Efforts have beenmade to simplify CBS by refactoring a large number of genes with rearranged polycistrons and synthetic regulatory circuits. Here, a posttranslational protein-splicing strategy derived from RNA viruses was exploited to minimize gene numbers of the classic nitrogenase system, where the expression stoichiometry is particularly important. Operon-based nif genes from Klebsiella oxytoca were regrouped into giant genes either by fusing genes together or by expressing polyproteins that are subsequently cleaved with Tobacco Etch Virus protease. After several rounds of selection based on protein expression levels and tolerance toward a remnant C-terminal ENLYFQ-tail, a system with only five giant genes showed optimal nitrogenase activity and supported diazotrophic growth of Escherichia coli. This study provides an approach for efficient translation from an operon-based system into a polyprotein-based assembly that has the potential for portable and stoichiometric expression of the complex nitrogenase system in eukaryotic organisms.</description><subject>Assembly</subject><subject>Bacterial Proteins - biosynthesis</subject><subject>Bacterial Proteins - genetics</subject><subject>Biological Sciences</subject><subject>Biology</subject><subject>Biosynthesis</subject><subject>E coli</subject><subject>Endopeptidases - genetics</subject><subject>Endopeptidases - metabolism</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Klebsiella</subject><subject>Klebsiella oxytoca - genetics</subject><subject>Microorganisms, Genetically-Modified - genetics</subject><subject>Microorganisms, Genetically-Modified - metabolism</subject><subject>Nitrogen Fixation</subject><subject>Nitrogenase</subject><subject>Operon</subject><subject>PNAS Plus</subject><subject>Polyproteins</subject><subject>Polyproteins - biosynthesis</subject><subject>Polyproteins - genetics</subject><subject>Protein expression</subject><subject>Proteins</subject><subject>Reengineering</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA viruses</subject><subject>SEE COMMENTARY</subject><subject>Splicing</subject><subject>Stoichiometry</subject><subject>Synthetic biology</subject><subject>Tobacco</subject><subject>Viruses</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkctv1DAQhy0EotvCmRMoEpde0o4fyToXJFTxkirBAc6W7Ti7XiWeYHsR-e9xtGV5nCxrvt9oZj5CXlC4obDlt3PQ6YZKEF3HKG0ekQ2Fjtat6OAx2QCwbS0FExfkMqUDAHSNhKfkggO0lMtuQ4YvOC5zxOx8qFKOOrvdUg0Yywe93XucXI7eVjolN5lxqXCogs8Rdy5Ug_-ps8dQWZxmDC7kdMouIe9dLjHjccTd8ow8GfSY3POH94p8e__u693H-v7zh093b-9rKwTPdSN7cLo3LbWWd2B03zacOtFtLZXWCUYNd7TvpRZDM2ypYaKTwoDsGZiW9fyKvDn1nY9mcr0tE0U9qjn6ScdFofbq30rwe7XDH6qcAwRAaXD90CDi96NLWU0-WTeOOjg8JsVAghTA2hV9_R96wGMMZT1VXIAoSLNStyfKRkwpuuE8DAW1OlSrQ_XHYUm8-nuHM_9bWgFenoBDcRTPdbbeijWU_wJl2aUg</recordid><startdate>20180904</startdate><enddate>20180904</enddate><creator>Yang, Jianguo</creator><creator>Xie, Xiaqing</creator><creator>Xiang, Nan</creator><creator>Tian, Zhe-Xian</creator><creator>Dixon, Ray</creator><creator>Wang, Yi-Ping</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6348-639X</orcidid></search><sort><creationdate>20180904</creationdate><title>Polyprotein strategy for stoichiometric assembly of nitrogen fixation components for synthetic biology</title><author>Yang, Jianguo ; Xie, Xiaqing ; Xiang, Nan ; Tian, Zhe-Xian ; Dixon, Ray ; Wang, Yi-Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-58d0eadb61cc390bad6531e497c18ce421b3e1dd8a4f5f71b24984b08d20b62d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Assembly</topic><topic>Bacterial Proteins - biosynthesis</topic><topic>Bacterial Proteins - genetics</topic><topic>Biological Sciences</topic><topic>Biology</topic><topic>Biosynthesis</topic><topic>E coli</topic><topic>Endopeptidases - genetics</topic><topic>Endopeptidases - metabolism</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Klebsiella</topic><topic>Klebsiella oxytoca - genetics</topic><topic>Microorganisms, Genetically-Modified - genetics</topic><topic>Microorganisms, Genetically-Modified - metabolism</topic><topic>Nitrogen Fixation</topic><topic>Nitrogenase</topic><topic>Operon</topic><topic>PNAS Plus</topic><topic>Polyproteins</topic><topic>Polyproteins - biosynthesis</topic><topic>Polyproteins - genetics</topic><topic>Protein expression</topic><topic>Proteins</topic><topic>Reengineering</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA viruses</topic><topic>SEE COMMENTARY</topic><topic>Splicing</topic><topic>Stoichiometry</topic><topic>Synthetic biology</topic><topic>Tobacco</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Jianguo</creatorcontrib><creatorcontrib>Xie, Xiaqing</creatorcontrib><creatorcontrib>Xiang, Nan</creatorcontrib><creatorcontrib>Tian, Zhe-Xian</creatorcontrib><creatorcontrib>Dixon, Ray</creatorcontrib><creatorcontrib>Wang, Yi-Ping</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Jianguo</au><au>Xie, Xiaqing</au><au>Xiang, Nan</au><au>Tian, Zhe-Xian</au><au>Dixon, Ray</au><au>Wang, Yi-Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polyprotein strategy for stoichiometric assembly of nitrogen fixation components for synthetic biology</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2018-09-04</date><risdate>2018</risdate><volume>115</volume><issue>36</issue><spage>E8509</spage><epage>E8517</epage><pages>E8509-E8517</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Re-engineering of complex biological systems (CBS) is an important goal for applications in synthetic biology. Efforts have beenmade to simplify CBS by refactoring a large number of genes with rearranged polycistrons and synthetic regulatory circuits. Here, a posttranslational protein-splicing strategy derived from RNA viruses was exploited to minimize gene numbers of the classic nitrogenase system, where the expression stoichiometry is particularly important. Operon-based nif genes from Klebsiella oxytoca were regrouped into giant genes either by fusing genes together or by expressing polyproteins that are subsequently cleaved with Tobacco Etch Virus protease. After several rounds of selection based on protein expression levels and tolerance toward a remnant C-terminal ENLYFQ-tail, a system with only five giant genes showed optimal nitrogenase activity and supported diazotrophic growth of Escherichia coli. This study provides an approach for efficient translation from an operon-based system into a polyprotein-based assembly that has the potential for portable and stoichiometric expression of the complex nitrogenase system in eukaryotic organisms.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>30061389</pmid><doi>10.1073/pnas.1804992115</doi><orcidid>https://orcid.org/0000-0002-6348-639X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2018-09, Vol.115 (36), p.E8509-E8517 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6130400 |
source | Open Access: PubMed Central; JSTOR Archival Journals and Primary Sources Collection |
subjects | Assembly Bacterial Proteins - biosynthesis Bacterial Proteins - genetics Biological Sciences Biology Biosynthesis E coli Endopeptidases - genetics Endopeptidases - metabolism Escherichia coli - genetics Escherichia coli - metabolism Gene expression Genes Klebsiella Klebsiella oxytoca - genetics Microorganisms, Genetically-Modified - genetics Microorganisms, Genetically-Modified - metabolism Nitrogen Fixation Nitrogenase Operon PNAS Plus Polyproteins Polyproteins - biosynthesis Polyproteins - genetics Protein expression Proteins Reengineering Ribonucleic acid RNA RNA viruses SEE COMMENTARY Splicing Stoichiometry Synthetic biology Tobacco Viruses |
title | Polyprotein strategy for stoichiometric assembly of nitrogen fixation components for synthetic biology |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A25%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polyprotein%20strategy%20for%20stoichiometric%20assembly%20of%20nitrogen%20fixation%20components%20for%20synthetic%20biology&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Yang,%20Jianguo&rft.date=2018-09-04&rft.volume=115&rft.issue=36&rft.spage=E8509&rft.epage=E8517&rft.pages=E8509-E8517&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1804992115&rft_dat=%3Cjstor_pubme%3E26531251%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c443t-58d0eadb61cc390bad6531e497c18ce421b3e1dd8a4f5f71b24984b08d20b62d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2110460350&rft_id=info:pmid/30061389&rft_jstor_id=26531251&rfr_iscdi=true |