Loading…

Polyprotein strategy for stoichiometric assembly of nitrogen fixation components for synthetic biology

Re-engineering of complex biological systems (CBS) is an important goal for applications in synthetic biology. Efforts have beenmade to simplify CBS by refactoring a large number of genes with rearranged polycistrons and synthetic regulatory circuits. Here, a posttranslational protein-splicing strat...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2018-09, Vol.115 (36), p.E8509-E8517
Main Authors: Yang, Jianguo, Xie, Xiaqing, Xiang, Nan, Tian, Zhe-Xian, Dixon, Ray, Wang, Yi-Ping
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c443t-58d0eadb61cc390bad6531e497c18ce421b3e1dd8a4f5f71b24984b08d20b62d3
cites cdi_FETCH-LOGICAL-c443t-58d0eadb61cc390bad6531e497c18ce421b3e1dd8a4f5f71b24984b08d20b62d3
container_end_page E8517
container_issue 36
container_start_page E8509
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 115
creator Yang, Jianguo
Xie, Xiaqing
Xiang, Nan
Tian, Zhe-Xian
Dixon, Ray
Wang, Yi-Ping
description Re-engineering of complex biological systems (CBS) is an important goal for applications in synthetic biology. Efforts have beenmade to simplify CBS by refactoring a large number of genes with rearranged polycistrons and synthetic regulatory circuits. Here, a posttranslational protein-splicing strategy derived from RNA viruses was exploited to minimize gene numbers of the classic nitrogenase system, where the expression stoichiometry is particularly important. Operon-based nif genes from Klebsiella oxytoca were regrouped into giant genes either by fusing genes together or by expressing polyproteins that are subsequently cleaved with Tobacco Etch Virus protease. After several rounds of selection based on protein expression levels and tolerance toward a remnant C-terminal ENLYFQ-tail, a system with only five giant genes showed optimal nitrogenase activity and supported diazotrophic growth of Escherichia coli. This study provides an approach for efficient translation from an operon-based system into a polyprotein-based assembly that has the potential for portable and stoichiometric expression of the complex nitrogenase system in eukaryotic organisms.
doi_str_mv 10.1073/pnas.1804992115
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6130400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26531251</jstor_id><sourcerecordid>26531251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-58d0eadb61cc390bad6531e497c18ce421b3e1dd8a4f5f71b24984b08d20b62d3</originalsourceid><addsrcrecordid>eNpdkctv1DAQhy0EotvCmRMoEpde0o4fyToXJFTxkirBAc6W7Ti7XiWeYHsR-e9xtGV5nCxrvt9oZj5CXlC4obDlt3PQ6YZKEF3HKG0ekQ2Fjtat6OAx2QCwbS0FExfkMqUDAHSNhKfkggO0lMtuQ4YvOC5zxOx8qFKOOrvdUg0Yywe93XucXI7eVjolN5lxqXCogs8Rdy5Ug_-ps8dQWZxmDC7kdMouIe9dLjHjccTd8ow8GfSY3POH94p8e__u693H-v7zh093b-9rKwTPdSN7cLo3LbWWd2B03zacOtFtLZXWCUYNd7TvpRZDM2ypYaKTwoDsGZiW9fyKvDn1nY9mcr0tE0U9qjn6ScdFofbq30rwe7XDH6qcAwRAaXD90CDi96NLWU0-WTeOOjg8JsVAghTA2hV9_R96wGMMZT1VXIAoSLNStyfKRkwpuuE8DAW1OlSrQ_XHYUm8-nuHM_9bWgFenoBDcRTPdbbeijWU_wJl2aUg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2110460350</pqid></control><display><type>article</type><title>Polyprotein strategy for stoichiometric assembly of nitrogen fixation components for synthetic biology</title><source>Open Access: PubMed Central</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Yang, Jianguo ; Xie, Xiaqing ; Xiang, Nan ; Tian, Zhe-Xian ; Dixon, Ray ; Wang, Yi-Ping</creator><creatorcontrib>Yang, Jianguo ; Xie, Xiaqing ; Xiang, Nan ; Tian, Zhe-Xian ; Dixon, Ray ; Wang, Yi-Ping</creatorcontrib><description>Re-engineering of complex biological systems (CBS) is an important goal for applications in synthetic biology. Efforts have beenmade to simplify CBS by refactoring a large number of genes with rearranged polycistrons and synthetic regulatory circuits. Here, a posttranslational protein-splicing strategy derived from RNA viruses was exploited to minimize gene numbers of the classic nitrogenase system, where the expression stoichiometry is particularly important. Operon-based nif genes from Klebsiella oxytoca were regrouped into giant genes either by fusing genes together or by expressing polyproteins that are subsequently cleaved with Tobacco Etch Virus protease. After several rounds of selection based on protein expression levels and tolerance toward a remnant C-terminal ENLYFQ-tail, a system with only five giant genes showed optimal nitrogenase activity and supported diazotrophic growth of Escherichia coli. This study provides an approach for efficient translation from an operon-based system into a polyprotein-based assembly that has the potential for portable and stoichiometric expression of the complex nitrogenase system in eukaryotic organisms.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1804992115</identifier><identifier>PMID: 30061389</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Assembly ; Bacterial Proteins - biosynthesis ; Bacterial Proteins - genetics ; Biological Sciences ; Biology ; Biosynthesis ; E coli ; Endopeptidases - genetics ; Endopeptidases - metabolism ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Gene expression ; Genes ; Klebsiella ; Klebsiella oxytoca - genetics ; Microorganisms, Genetically-Modified - genetics ; Microorganisms, Genetically-Modified - metabolism ; Nitrogen Fixation ; Nitrogenase ; Operon ; PNAS Plus ; Polyproteins ; Polyproteins - biosynthesis ; Polyproteins - genetics ; Protein expression ; Proteins ; Reengineering ; Ribonucleic acid ; RNA ; RNA viruses ; SEE COMMENTARY ; Splicing ; Stoichiometry ; Synthetic biology ; Tobacco ; Viruses</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2018-09, Vol.115 (36), p.E8509-E8517</ispartof><rights>Volumes 1–89 and 106–115, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright © 2018 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Sep 4, 2018</rights><rights>Copyright © 2018 the Author(s). Published by PNAS. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-58d0eadb61cc390bad6531e497c18ce421b3e1dd8a4f5f71b24984b08d20b62d3</citedby><cites>FETCH-LOGICAL-c443t-58d0eadb61cc390bad6531e497c18ce421b3e1dd8a4f5f71b24984b08d20b62d3</cites><orcidid>0000-0002-6348-639X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26531251$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26531251$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30061389$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Jianguo</creatorcontrib><creatorcontrib>Xie, Xiaqing</creatorcontrib><creatorcontrib>Xiang, Nan</creatorcontrib><creatorcontrib>Tian, Zhe-Xian</creatorcontrib><creatorcontrib>Dixon, Ray</creatorcontrib><creatorcontrib>Wang, Yi-Ping</creatorcontrib><title>Polyprotein strategy for stoichiometric assembly of nitrogen fixation components for synthetic biology</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Re-engineering of complex biological systems (CBS) is an important goal for applications in synthetic biology. Efforts have beenmade to simplify CBS by refactoring a large number of genes with rearranged polycistrons and synthetic regulatory circuits. Here, a posttranslational protein-splicing strategy derived from RNA viruses was exploited to minimize gene numbers of the classic nitrogenase system, where the expression stoichiometry is particularly important. Operon-based nif genes from Klebsiella oxytoca were regrouped into giant genes either by fusing genes together or by expressing polyproteins that are subsequently cleaved with Tobacco Etch Virus protease. After several rounds of selection based on protein expression levels and tolerance toward a remnant C-terminal ENLYFQ-tail, a system with only five giant genes showed optimal nitrogenase activity and supported diazotrophic growth of Escherichia coli. This study provides an approach for efficient translation from an operon-based system into a polyprotein-based assembly that has the potential for portable and stoichiometric expression of the complex nitrogenase system in eukaryotic organisms.</description><subject>Assembly</subject><subject>Bacterial Proteins - biosynthesis</subject><subject>Bacterial Proteins - genetics</subject><subject>Biological Sciences</subject><subject>Biology</subject><subject>Biosynthesis</subject><subject>E coli</subject><subject>Endopeptidases - genetics</subject><subject>Endopeptidases - metabolism</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Klebsiella</subject><subject>Klebsiella oxytoca - genetics</subject><subject>Microorganisms, Genetically-Modified - genetics</subject><subject>Microorganisms, Genetically-Modified - metabolism</subject><subject>Nitrogen Fixation</subject><subject>Nitrogenase</subject><subject>Operon</subject><subject>PNAS Plus</subject><subject>Polyproteins</subject><subject>Polyproteins - biosynthesis</subject><subject>Polyproteins - genetics</subject><subject>Protein expression</subject><subject>Proteins</subject><subject>Reengineering</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA viruses</subject><subject>SEE COMMENTARY</subject><subject>Splicing</subject><subject>Stoichiometry</subject><subject>Synthetic biology</subject><subject>Tobacco</subject><subject>Viruses</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkctv1DAQhy0EotvCmRMoEpde0o4fyToXJFTxkirBAc6W7Ti7XiWeYHsR-e9xtGV5nCxrvt9oZj5CXlC4obDlt3PQ6YZKEF3HKG0ekQ2Fjtat6OAx2QCwbS0FExfkMqUDAHSNhKfkggO0lMtuQ4YvOC5zxOx8qFKOOrvdUg0Yywe93XucXI7eVjolN5lxqXCogs8Rdy5Ug_-ps8dQWZxmDC7kdMouIe9dLjHjccTd8ow8GfSY3POH94p8e__u693H-v7zh093b-9rKwTPdSN7cLo3LbWWd2B03zacOtFtLZXWCUYNd7TvpRZDM2ypYaKTwoDsGZiW9fyKvDn1nY9mcr0tE0U9qjn6ScdFofbq30rwe7XDH6qcAwRAaXD90CDi96NLWU0-WTeOOjg8JsVAghTA2hV9_R96wGMMZT1VXIAoSLNStyfKRkwpuuE8DAW1OlSrQ_XHYUm8-nuHM_9bWgFenoBDcRTPdbbeijWU_wJl2aUg</recordid><startdate>20180904</startdate><enddate>20180904</enddate><creator>Yang, Jianguo</creator><creator>Xie, Xiaqing</creator><creator>Xiang, Nan</creator><creator>Tian, Zhe-Xian</creator><creator>Dixon, Ray</creator><creator>Wang, Yi-Ping</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6348-639X</orcidid></search><sort><creationdate>20180904</creationdate><title>Polyprotein strategy for stoichiometric assembly of nitrogen fixation components for synthetic biology</title><author>Yang, Jianguo ; Xie, Xiaqing ; Xiang, Nan ; Tian, Zhe-Xian ; Dixon, Ray ; Wang, Yi-Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-58d0eadb61cc390bad6531e497c18ce421b3e1dd8a4f5f71b24984b08d20b62d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Assembly</topic><topic>Bacterial Proteins - biosynthesis</topic><topic>Bacterial Proteins - genetics</topic><topic>Biological Sciences</topic><topic>Biology</topic><topic>Biosynthesis</topic><topic>E coli</topic><topic>Endopeptidases - genetics</topic><topic>Endopeptidases - metabolism</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Klebsiella</topic><topic>Klebsiella oxytoca - genetics</topic><topic>Microorganisms, Genetically-Modified - genetics</topic><topic>Microorganisms, Genetically-Modified - metabolism</topic><topic>Nitrogen Fixation</topic><topic>Nitrogenase</topic><topic>Operon</topic><topic>PNAS Plus</topic><topic>Polyproteins</topic><topic>Polyproteins - biosynthesis</topic><topic>Polyproteins - genetics</topic><topic>Protein expression</topic><topic>Proteins</topic><topic>Reengineering</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA viruses</topic><topic>SEE COMMENTARY</topic><topic>Splicing</topic><topic>Stoichiometry</topic><topic>Synthetic biology</topic><topic>Tobacco</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Jianguo</creatorcontrib><creatorcontrib>Xie, Xiaqing</creatorcontrib><creatorcontrib>Xiang, Nan</creatorcontrib><creatorcontrib>Tian, Zhe-Xian</creatorcontrib><creatorcontrib>Dixon, Ray</creatorcontrib><creatorcontrib>Wang, Yi-Ping</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Jianguo</au><au>Xie, Xiaqing</au><au>Xiang, Nan</au><au>Tian, Zhe-Xian</au><au>Dixon, Ray</au><au>Wang, Yi-Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polyprotein strategy for stoichiometric assembly of nitrogen fixation components for synthetic biology</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2018-09-04</date><risdate>2018</risdate><volume>115</volume><issue>36</issue><spage>E8509</spage><epage>E8517</epage><pages>E8509-E8517</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Re-engineering of complex biological systems (CBS) is an important goal for applications in synthetic biology. Efforts have beenmade to simplify CBS by refactoring a large number of genes with rearranged polycistrons and synthetic regulatory circuits. Here, a posttranslational protein-splicing strategy derived from RNA viruses was exploited to minimize gene numbers of the classic nitrogenase system, where the expression stoichiometry is particularly important. Operon-based nif genes from Klebsiella oxytoca were regrouped into giant genes either by fusing genes together or by expressing polyproteins that are subsequently cleaved with Tobacco Etch Virus protease. After several rounds of selection based on protein expression levels and tolerance toward a remnant C-terminal ENLYFQ-tail, a system with only five giant genes showed optimal nitrogenase activity and supported diazotrophic growth of Escherichia coli. This study provides an approach for efficient translation from an operon-based system into a polyprotein-based assembly that has the potential for portable and stoichiometric expression of the complex nitrogenase system in eukaryotic organisms.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>30061389</pmid><doi>10.1073/pnas.1804992115</doi><orcidid>https://orcid.org/0000-0002-6348-639X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2018-09, Vol.115 (36), p.E8509-E8517
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6130400
source Open Access: PubMed Central; JSTOR Archival Journals and Primary Sources Collection
subjects Assembly
Bacterial Proteins - biosynthesis
Bacterial Proteins - genetics
Biological Sciences
Biology
Biosynthesis
E coli
Endopeptidases - genetics
Endopeptidases - metabolism
Escherichia coli - genetics
Escherichia coli - metabolism
Gene expression
Genes
Klebsiella
Klebsiella oxytoca - genetics
Microorganisms, Genetically-Modified - genetics
Microorganisms, Genetically-Modified - metabolism
Nitrogen Fixation
Nitrogenase
Operon
PNAS Plus
Polyproteins
Polyproteins - biosynthesis
Polyproteins - genetics
Protein expression
Proteins
Reengineering
Ribonucleic acid
RNA
RNA viruses
SEE COMMENTARY
Splicing
Stoichiometry
Synthetic biology
Tobacco
Viruses
title Polyprotein strategy for stoichiometric assembly of nitrogen fixation components for synthetic biology
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A25%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polyprotein%20strategy%20for%20stoichiometric%20assembly%20of%20nitrogen%20fixation%20components%20for%20synthetic%20biology&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Yang,%20Jianguo&rft.date=2018-09-04&rft.volume=115&rft.issue=36&rft.spage=E8509&rft.epage=E8517&rft.pages=E8509-E8517&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1804992115&rft_dat=%3Cjstor_pubme%3E26531251%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c443t-58d0eadb61cc390bad6531e497c18ce421b3e1dd8a4f5f71b24984b08d20b62d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2110460350&rft_id=info:pmid/30061389&rft_jstor_id=26531251&rfr_iscdi=true