Loading…
Empirical Optimization of Interactions between Proteins and Chemical Denaturants in Molecular Simulations
Chemical denaturants are the most commonly used perturbation applied to study protein stability and folding kinetics as well as the properties of unfolded polypeptides. We build on recent work balancing the interactions of proteins and water, and accurate models for the solution properties of urea a...
Saved in:
Published in: | Journal of chemical theory and computation 2015-11, Vol.11 (11), p.5543-5553 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a466t-a893d19f0ac6235a722166754d7579995658f73e38487121da8b1cd3cd1cea173 |
---|---|
cites | cdi_FETCH-LOGICAL-a466t-a893d19f0ac6235a722166754d7579995658f73e38487121da8b1cd3cd1cea173 |
container_end_page | 5553 |
container_issue | 11 |
container_start_page | 5543 |
container_title | Journal of chemical theory and computation |
container_volume | 11 |
creator | Zheng, Wenwei Borgia, Alessandro Borgia, Madeleine B Schuler, Benjamin Best, Robert B |
description | Chemical denaturants are the most commonly used perturbation applied to study protein stability and folding kinetics as well as the properties of unfolded polypeptides. We build on recent work balancing the interactions of proteins and water, and accurate models for the solution properties of urea and guanidinium chloride, to develop a combined force field that is able to capture the strength of interactions between proteins and denaturants. We use solubility data for a model tetraglycine peptide in each denaturant to tune the protein–denaturant interaction by a novel simulation methodology. We validate the results against data for more complex sequences: single-molecule Förster resonance energy transfer data for a 34-residue fragment of the globular protein CspTm and photoinduced electron transfer quenching data for the disordered peptides C(AGQ) n W in denaturant solution as well as the chemical denaturation of the mini-protein Trp cage. The combined force field model should aid our understanding of denaturation mechanisms and the interpretation of experiment. |
doi_str_mv | 10.1021/acs.jctc.5b00778 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6139257</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1734279521</sourcerecordid><originalsourceid>FETCH-LOGICAL-a466t-a893d19f0ac6235a722166754d7579995658f73e38487121da8b1cd3cd1cea173</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhSNERUvhzgn5yIHdeuzYji9IaClQqVWRgLM16zjUVWIvtlNEf32T3WUFB9TT2J73PnnmVdUroEugDM7Q5uWtLXYp1pQq1TypTkDUeqElk08PZ2iOq-c531LKec34s-qYSaFqXsNJ5c-HjU_eYk-uN8UP_h6Lj4HEjlyE4hLa-ZrJ2pVfzgXyJcXi_PSAoSWrGzdsrR9cwDImDCUTH8hV7J0de0zkqx-mukW8qI467LN7ua-n1feP599WnxeX158uVu8vF1hLWRbYaN6C7ihaybhAxRhIqUTdKqG01kKKplPc8aZuFDBosVmDbbltwToExU-rdzvuZlwPrrUulIS92SQ_YPptInrzbyf4G_Mj3hkJXDMxA97sASn-HF0uZvDZur7H4OKYDTRMCK4FwONSNS1cacFmKd1JbYo5J9cdfgTUzGGaKUwzh2n2YU6W139PcjD8SW8SvN0JttY4pjAt9v-8B9ZOrTQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1734279521</pqid></control><display><type>article</type><title>Empirical Optimization of Interactions between Proteins and Chemical Denaturants in Molecular Simulations</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Zheng, Wenwei ; Borgia, Alessandro ; Borgia, Madeleine B ; Schuler, Benjamin ; Best, Robert B</creator><creatorcontrib>Zheng, Wenwei ; Borgia, Alessandro ; Borgia, Madeleine B ; Schuler, Benjamin ; Best, Robert B</creatorcontrib><description>Chemical denaturants are the most commonly used perturbation applied to study protein stability and folding kinetics as well as the properties of unfolded polypeptides. We build on recent work balancing the interactions of proteins and water, and accurate models for the solution properties of urea and guanidinium chloride, to develop a combined force field that is able to capture the strength of interactions between proteins and denaturants. We use solubility data for a model tetraglycine peptide in each denaturant to tune the protein–denaturant interaction by a novel simulation methodology. We validate the results against data for more complex sequences: single-molecule Förster resonance energy transfer data for a 34-residue fragment of the globular protein CspTm and photoinduced electron transfer quenching data for the disordered peptides C(AGQ) n W in denaturant solution as well as the chemical denaturation of the mini-protein Trp cage. The combined force field model should aid our understanding of denaturation mechanisms and the interpretation of experiment.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.5b00778</identifier><identifier>PMID: 26574341</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Chlorides ; Computer simulation ; Construction ; Denaturation ; Mathematical models ; Models, Molecular ; Molecular Dynamics Simulation ; Peptides ; Peptides - chemistry ; Polypeptides ; Protein Denaturation ; Proteins ; Proteins - chemistry ; Urea - chemistry</subject><ispartof>Journal of chemical theory and computation, 2015-11, Vol.11 (11), p.5543-5553</ispartof><rights>Copyright © 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a466t-a893d19f0ac6235a722166754d7579995658f73e38487121da8b1cd3cd1cea173</citedby><cites>FETCH-LOGICAL-a466t-a893d19f0ac6235a722166754d7579995658f73e38487121da8b1cd3cd1cea173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26574341$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zheng, Wenwei</creatorcontrib><creatorcontrib>Borgia, Alessandro</creatorcontrib><creatorcontrib>Borgia, Madeleine B</creatorcontrib><creatorcontrib>Schuler, Benjamin</creatorcontrib><creatorcontrib>Best, Robert B</creatorcontrib><title>Empirical Optimization of Interactions between Proteins and Chemical Denaturants in Molecular Simulations</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>Chemical denaturants are the most commonly used perturbation applied to study protein stability and folding kinetics as well as the properties of unfolded polypeptides. We build on recent work balancing the interactions of proteins and water, and accurate models for the solution properties of urea and guanidinium chloride, to develop a combined force field that is able to capture the strength of interactions between proteins and denaturants. We use solubility data for a model tetraglycine peptide in each denaturant to tune the protein–denaturant interaction by a novel simulation methodology. We validate the results against data for more complex sequences: single-molecule Förster resonance energy transfer data for a 34-residue fragment of the globular protein CspTm and photoinduced electron transfer quenching data for the disordered peptides C(AGQ) n W in denaturant solution as well as the chemical denaturation of the mini-protein Trp cage. The combined force field model should aid our understanding of denaturation mechanisms and the interpretation of experiment.</description><subject>Chlorides</subject><subject>Computer simulation</subject><subject>Construction</subject><subject>Denaturation</subject><subject>Mathematical models</subject><subject>Models, Molecular</subject><subject>Molecular Dynamics Simulation</subject><subject>Peptides</subject><subject>Peptides - chemistry</subject><subject>Polypeptides</subject><subject>Protein Denaturation</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>Urea - chemistry</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkUFv1DAQhSNERUvhzgn5yIHdeuzYji9IaClQqVWRgLM16zjUVWIvtlNEf32T3WUFB9TT2J73PnnmVdUroEugDM7Q5uWtLXYp1pQq1TypTkDUeqElk08PZ2iOq-c531LKec34s-qYSaFqXsNJ5c-HjU_eYk-uN8UP_h6Lj4HEjlyE4hLa-ZrJ2pVfzgXyJcXi_PSAoSWrGzdsrR9cwDImDCUTH8hV7J0de0zkqx-mukW8qI467LN7ua-n1feP599WnxeX158uVu8vF1hLWRbYaN6C7ihaybhAxRhIqUTdKqG01kKKplPc8aZuFDBosVmDbbltwToExU-rdzvuZlwPrrUulIS92SQ_YPptInrzbyf4G_Mj3hkJXDMxA97sASn-HF0uZvDZur7H4OKYDTRMCK4FwONSNS1cacFmKd1JbYo5J9cdfgTUzGGaKUwzh2n2YU6W139PcjD8SW8SvN0JttY4pjAt9v-8B9ZOrTQ</recordid><startdate>20151110</startdate><enddate>20151110</enddate><creator>Zheng, Wenwei</creator><creator>Borgia, Alessandro</creator><creator>Borgia, Madeleine B</creator><creator>Schuler, Benjamin</creator><creator>Best, Robert B</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>5PM</scope></search><sort><creationdate>20151110</creationdate><title>Empirical Optimization of Interactions between Proteins and Chemical Denaturants in Molecular Simulations</title><author>Zheng, Wenwei ; Borgia, Alessandro ; Borgia, Madeleine B ; Schuler, Benjamin ; Best, Robert B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a466t-a893d19f0ac6235a722166754d7579995658f73e38487121da8b1cd3cd1cea173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Chlorides</topic><topic>Computer simulation</topic><topic>Construction</topic><topic>Denaturation</topic><topic>Mathematical models</topic><topic>Models, Molecular</topic><topic>Molecular Dynamics Simulation</topic><topic>Peptides</topic><topic>Peptides - chemistry</topic><topic>Polypeptides</topic><topic>Protein Denaturation</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>Urea - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Wenwei</creatorcontrib><creatorcontrib>Borgia, Alessandro</creatorcontrib><creatorcontrib>Borgia, Madeleine B</creatorcontrib><creatorcontrib>Schuler, Benjamin</creatorcontrib><creatorcontrib>Best, Robert B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Wenwei</au><au>Borgia, Alessandro</au><au>Borgia, Madeleine B</au><au>Schuler, Benjamin</au><au>Best, Robert B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Empirical Optimization of Interactions between Proteins and Chemical Denaturants in Molecular Simulations</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2015-11-10</date><risdate>2015</risdate><volume>11</volume><issue>11</issue><spage>5543</spage><epage>5553</epage><pages>5543-5553</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>Chemical denaturants are the most commonly used perturbation applied to study protein stability and folding kinetics as well as the properties of unfolded polypeptides. We build on recent work balancing the interactions of proteins and water, and accurate models for the solution properties of urea and guanidinium chloride, to develop a combined force field that is able to capture the strength of interactions between proteins and denaturants. We use solubility data for a model tetraglycine peptide in each denaturant to tune the protein–denaturant interaction by a novel simulation methodology. We validate the results against data for more complex sequences: single-molecule Förster resonance energy transfer data for a 34-residue fragment of the globular protein CspTm and photoinduced electron transfer quenching data for the disordered peptides C(AGQ) n W in denaturant solution as well as the chemical denaturation of the mini-protein Trp cage. The combined force field model should aid our understanding of denaturation mechanisms and the interpretation of experiment.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26574341</pmid><doi>10.1021/acs.jctc.5b00778</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9618 |
ispartof | Journal of chemical theory and computation, 2015-11, Vol.11 (11), p.5543-5553 |
issn | 1549-9618 1549-9626 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6139257 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Chlorides Computer simulation Construction Denaturation Mathematical models Models, Molecular Molecular Dynamics Simulation Peptides Peptides - chemistry Polypeptides Protein Denaturation Proteins Proteins - chemistry Urea - chemistry |
title | Empirical Optimization of Interactions between Proteins and Chemical Denaturants in Molecular Simulations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T02%3A46%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Empirical%20Optimization%20of%20Interactions%20between%20Proteins%20and%20Chemical%20Denaturants%20in%20Molecular%20Simulations&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Zheng,%20Wenwei&rft.date=2015-11-10&rft.volume=11&rft.issue=11&rft.spage=5543&rft.epage=5553&rft.pages=5543-5553&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.5b00778&rft_dat=%3Cproquest_pubme%3E1734279521%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a466t-a893d19f0ac6235a722166754d7579995658f73e38487121da8b1cd3cd1cea173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1734279521&rft_id=info:pmid/26574341&rfr_iscdi=true |