Loading…

Empirical Optimization of Interactions between Proteins and Chemical Denaturants in Molecular Simulations

Chemical denaturants are the most commonly used perturbation applied to study protein stability and folding kinetics as well as the properties of unfolded polypeptides. We build on recent work balancing the interactions of proteins and water, and accurate models for the solution properties of urea a...

Full description

Saved in:
Bibliographic Details
Published in:Journal of chemical theory and computation 2015-11, Vol.11 (11), p.5543-5553
Main Authors: Zheng, Wenwei, Borgia, Alessandro, Borgia, Madeleine B, Schuler, Benjamin, Best, Robert B
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a466t-a893d19f0ac6235a722166754d7579995658f73e38487121da8b1cd3cd1cea173
cites cdi_FETCH-LOGICAL-a466t-a893d19f0ac6235a722166754d7579995658f73e38487121da8b1cd3cd1cea173
container_end_page 5553
container_issue 11
container_start_page 5543
container_title Journal of chemical theory and computation
container_volume 11
creator Zheng, Wenwei
Borgia, Alessandro
Borgia, Madeleine B
Schuler, Benjamin
Best, Robert B
description Chemical denaturants are the most commonly used perturbation applied to study protein stability and folding kinetics as well as the properties of unfolded polypeptides. We build on recent work balancing the interactions of proteins and water, and accurate models for the solution properties of urea and guanidinium chloride, to develop a combined force field that is able to capture the strength of interactions between proteins and denaturants. We use solubility data for a model tetraglycine peptide in each denaturant to tune the protein–denaturant interaction by a novel simulation methodology. We validate the results against data for more complex sequences: single-molecule Förster resonance energy transfer data for a 34-residue fragment of the globular protein CspTm and photoinduced electron transfer quenching data for the disordered peptides C­(AGQ) n W in denaturant solution as well as the chemical denaturation of the mini-protein Trp cage. The combined force field model should aid our understanding of denaturation mechanisms and the interpretation of experiment.
doi_str_mv 10.1021/acs.jctc.5b00778
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6139257</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1734279521</sourcerecordid><originalsourceid>FETCH-LOGICAL-a466t-a893d19f0ac6235a722166754d7579995658f73e38487121da8b1cd3cd1cea173</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhSNERUvhzgn5yIHdeuzYji9IaClQqVWRgLM16zjUVWIvtlNEf32T3WUFB9TT2J73PnnmVdUroEugDM7Q5uWtLXYp1pQq1TypTkDUeqElk08PZ2iOq-c531LKec34s-qYSaFqXsNJ5c-HjU_eYk-uN8UP_h6Lj4HEjlyE4hLa-ZrJ2pVfzgXyJcXi_PSAoSWrGzdsrR9cwDImDCUTH8hV7J0de0zkqx-mukW8qI467LN7ua-n1feP599WnxeX158uVu8vF1hLWRbYaN6C7ihaybhAxRhIqUTdKqG01kKKplPc8aZuFDBosVmDbbltwToExU-rdzvuZlwPrrUulIS92SQ_YPptInrzbyf4G_Mj3hkJXDMxA97sASn-HF0uZvDZur7H4OKYDTRMCK4FwONSNS1cacFmKd1JbYo5J9cdfgTUzGGaKUwzh2n2YU6W139PcjD8SW8SvN0JttY4pjAt9v-8B9ZOrTQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1734279521</pqid></control><display><type>article</type><title>Empirical Optimization of Interactions between Proteins and Chemical Denaturants in Molecular Simulations</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Zheng, Wenwei ; Borgia, Alessandro ; Borgia, Madeleine B ; Schuler, Benjamin ; Best, Robert B</creator><creatorcontrib>Zheng, Wenwei ; Borgia, Alessandro ; Borgia, Madeleine B ; Schuler, Benjamin ; Best, Robert B</creatorcontrib><description>Chemical denaturants are the most commonly used perturbation applied to study protein stability and folding kinetics as well as the properties of unfolded polypeptides. We build on recent work balancing the interactions of proteins and water, and accurate models for the solution properties of urea and guanidinium chloride, to develop a combined force field that is able to capture the strength of interactions between proteins and denaturants. We use solubility data for a model tetraglycine peptide in each denaturant to tune the protein–denaturant interaction by a novel simulation methodology. We validate the results against data for more complex sequences: single-molecule Förster resonance energy transfer data for a 34-residue fragment of the globular protein CspTm and photoinduced electron transfer quenching data for the disordered peptides C­(AGQ) n W in denaturant solution as well as the chemical denaturation of the mini-protein Trp cage. The combined force field model should aid our understanding of denaturation mechanisms and the interpretation of experiment.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.5b00778</identifier><identifier>PMID: 26574341</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Chlorides ; Computer simulation ; Construction ; Denaturation ; Mathematical models ; Models, Molecular ; Molecular Dynamics Simulation ; Peptides ; Peptides - chemistry ; Polypeptides ; Protein Denaturation ; Proteins ; Proteins - chemistry ; Urea - chemistry</subject><ispartof>Journal of chemical theory and computation, 2015-11, Vol.11 (11), p.5543-5553</ispartof><rights>Copyright © 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a466t-a893d19f0ac6235a722166754d7579995658f73e38487121da8b1cd3cd1cea173</citedby><cites>FETCH-LOGICAL-a466t-a893d19f0ac6235a722166754d7579995658f73e38487121da8b1cd3cd1cea173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26574341$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zheng, Wenwei</creatorcontrib><creatorcontrib>Borgia, Alessandro</creatorcontrib><creatorcontrib>Borgia, Madeleine B</creatorcontrib><creatorcontrib>Schuler, Benjamin</creatorcontrib><creatorcontrib>Best, Robert B</creatorcontrib><title>Empirical Optimization of Interactions between Proteins and Chemical Denaturants in Molecular Simulations</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>Chemical denaturants are the most commonly used perturbation applied to study protein stability and folding kinetics as well as the properties of unfolded polypeptides. We build on recent work balancing the interactions of proteins and water, and accurate models for the solution properties of urea and guanidinium chloride, to develop a combined force field that is able to capture the strength of interactions between proteins and denaturants. We use solubility data for a model tetraglycine peptide in each denaturant to tune the protein–denaturant interaction by a novel simulation methodology. We validate the results against data for more complex sequences: single-molecule Förster resonance energy transfer data for a 34-residue fragment of the globular protein CspTm and photoinduced electron transfer quenching data for the disordered peptides C­(AGQ) n W in denaturant solution as well as the chemical denaturation of the mini-protein Trp cage. The combined force field model should aid our understanding of denaturation mechanisms and the interpretation of experiment.</description><subject>Chlorides</subject><subject>Computer simulation</subject><subject>Construction</subject><subject>Denaturation</subject><subject>Mathematical models</subject><subject>Models, Molecular</subject><subject>Molecular Dynamics Simulation</subject><subject>Peptides</subject><subject>Peptides - chemistry</subject><subject>Polypeptides</subject><subject>Protein Denaturation</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>Urea - chemistry</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkUFv1DAQhSNERUvhzgn5yIHdeuzYji9IaClQqVWRgLM16zjUVWIvtlNEf32T3WUFB9TT2J73PnnmVdUroEugDM7Q5uWtLXYp1pQq1TypTkDUeqElk08PZ2iOq-c531LKec34s-qYSaFqXsNJ5c-HjU_eYk-uN8UP_h6Lj4HEjlyE4hLa-ZrJ2pVfzgXyJcXi_PSAoSWrGzdsrR9cwDImDCUTH8hV7J0de0zkqx-mukW8qI467LN7ua-n1feP599WnxeX158uVu8vF1hLWRbYaN6C7ihaybhAxRhIqUTdKqG01kKKplPc8aZuFDBosVmDbbltwToExU-rdzvuZlwPrrUulIS92SQ_YPptInrzbyf4G_Mj3hkJXDMxA97sASn-HF0uZvDZur7H4OKYDTRMCK4FwONSNS1cacFmKd1JbYo5J9cdfgTUzGGaKUwzh2n2YU6W139PcjD8SW8SvN0JttY4pjAt9v-8B9ZOrTQ</recordid><startdate>20151110</startdate><enddate>20151110</enddate><creator>Zheng, Wenwei</creator><creator>Borgia, Alessandro</creator><creator>Borgia, Madeleine B</creator><creator>Schuler, Benjamin</creator><creator>Best, Robert B</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>5PM</scope></search><sort><creationdate>20151110</creationdate><title>Empirical Optimization of Interactions between Proteins and Chemical Denaturants in Molecular Simulations</title><author>Zheng, Wenwei ; Borgia, Alessandro ; Borgia, Madeleine B ; Schuler, Benjamin ; Best, Robert B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a466t-a893d19f0ac6235a722166754d7579995658f73e38487121da8b1cd3cd1cea173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Chlorides</topic><topic>Computer simulation</topic><topic>Construction</topic><topic>Denaturation</topic><topic>Mathematical models</topic><topic>Models, Molecular</topic><topic>Molecular Dynamics Simulation</topic><topic>Peptides</topic><topic>Peptides - chemistry</topic><topic>Polypeptides</topic><topic>Protein Denaturation</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>Urea - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Wenwei</creatorcontrib><creatorcontrib>Borgia, Alessandro</creatorcontrib><creatorcontrib>Borgia, Madeleine B</creatorcontrib><creatorcontrib>Schuler, Benjamin</creatorcontrib><creatorcontrib>Best, Robert B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Wenwei</au><au>Borgia, Alessandro</au><au>Borgia, Madeleine B</au><au>Schuler, Benjamin</au><au>Best, Robert B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Empirical Optimization of Interactions between Proteins and Chemical Denaturants in Molecular Simulations</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2015-11-10</date><risdate>2015</risdate><volume>11</volume><issue>11</issue><spage>5543</spage><epage>5553</epage><pages>5543-5553</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>Chemical denaturants are the most commonly used perturbation applied to study protein stability and folding kinetics as well as the properties of unfolded polypeptides. We build on recent work balancing the interactions of proteins and water, and accurate models for the solution properties of urea and guanidinium chloride, to develop a combined force field that is able to capture the strength of interactions between proteins and denaturants. We use solubility data for a model tetraglycine peptide in each denaturant to tune the protein–denaturant interaction by a novel simulation methodology. We validate the results against data for more complex sequences: single-molecule Förster resonance energy transfer data for a 34-residue fragment of the globular protein CspTm and photoinduced electron transfer quenching data for the disordered peptides C­(AGQ) n W in denaturant solution as well as the chemical denaturation of the mini-protein Trp cage. The combined force field model should aid our understanding of denaturation mechanisms and the interpretation of experiment.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26574341</pmid><doi>10.1021/acs.jctc.5b00778</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1549-9618
ispartof Journal of chemical theory and computation, 2015-11, Vol.11 (11), p.5543-5553
issn 1549-9618
1549-9626
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6139257
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Chlorides
Computer simulation
Construction
Denaturation
Mathematical models
Models, Molecular
Molecular Dynamics Simulation
Peptides
Peptides - chemistry
Polypeptides
Protein Denaturation
Proteins
Proteins - chemistry
Urea - chemistry
title Empirical Optimization of Interactions between Proteins and Chemical Denaturants in Molecular Simulations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T02%3A46%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Empirical%20Optimization%20of%20Interactions%20between%20Proteins%20and%20Chemical%20Denaturants%20in%20Molecular%20Simulations&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Zheng,%20Wenwei&rft.date=2015-11-10&rft.volume=11&rft.issue=11&rft.spage=5543&rft.epage=5553&rft.pages=5543-5553&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.5b00778&rft_dat=%3Cproquest_pubme%3E1734279521%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a466t-a893d19f0ac6235a722166754d7579995658f73e38487121da8b1cd3cd1cea173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1734279521&rft_id=info:pmid/26574341&rfr_iscdi=true