Loading…

Improved Stability of Atomic Layer Deposited Amorphous TiO2 Photoelectrode Coatings by Thermally Induced Oxygen Defects

Amorphous titanium dioxide (a-TiO2) combined with an electrocatalyst has shown to be a promising coating for stabilizing traditional semiconductor materials used in artificial photosynthesis for efficient photoelectrochemical solar-to-fuel energy conversion. In this study we report a detailed analys...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry of materials 2018-02, Vol.30 (4), p.1199-1208
Main Authors: Hannula, Markku, Ali-Löytty, Harri, Lahtonen, Kimmo, Sarlin, Essi, Saari, Jesse, Valden, Mika
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1208
container_issue 4
container_start_page 1199
container_title Chemistry of materials
container_volume 30
creator Hannula, Markku
Ali-Löytty, Harri
Lahtonen, Kimmo
Sarlin, Essi
Saari, Jesse
Valden, Mika
description Amorphous titanium dioxide (a-TiO2) combined with an electrocatalyst has shown to be a promising coating for stabilizing traditional semiconductor materials used in artificial photosynthesis for efficient photoelectrochemical solar-to-fuel energy conversion. In this study we report a detailed analysis of two methods of modifying an undoped thin film of atomic layer deposited (ALD) a-TiO2 without an electrocatalyst to affect its performance in water splitting reaction as a protective photoelectrode coating. The methods are high-temperature annealing in ultrahigh vacuum and atomic hydrogen exposure. A key feature in both methods is that they preserve the amorphous structure of the film. Special attention is paid to the changes in the molecular and electronic structure of a-TiO2 induced by these treatments. On the basis of the photoelectrochemical results, the a-TiO2 is susceptible to photocorrosion but significant improvement in stability is achieved after heat treatment in vacuum at temperatures above 500 °C. On the other hand, the hydrogen treatment does not increase the stability despite the ostensibly similar reduction of a-TiO2. The surface analysis allows us to interpret the improved stability to the thermally induced formation of O– species within a-TiO2 that are essentially electronic defects in the anionic framework.
doi_str_mv 10.1021/acs.chemmater.7b02938
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6156093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2115278539</sourcerecordid><originalsourceid>FETCH-LOGICAL-a398t-832c65105d96045a36036d371d8dc7531f8bb9759baa47116027b2a2a49bd9b33</originalsourceid><addsrcrecordid>eNpVkd2LEzEUxYMobl39E4Q8-jI1H80keRFKXbVQqGB9DvlqJ8vMZEwyq_Pfm7JF8OnCvef84J4DwHuM1hgR_FHbvLadHwZdfFpzg4ik4gVYYUZQwxAiL8EKCcmbDWftHXiT8yNCuFrFa3BHEeFICrECv_fDlOKTd_BH0Sb0oSwwnuG2xCFYeNCLT_Czn2IOpWq2Q0xTF-cMT-FI4Pculuh7b0uKzsNd1CWMlwzNAk-dT4Pu-wXuRzfb6j3-WS5-rLBz1ee34NVZ99m_u8178PPLw2n3rTkcv-5320OjqRSlEZTYlmHEnGzRhmnaIto6yrETznJG8VkYIzmTRusNx7itjxmiid5I46Sh9B58euZOsxm8s34sSfdqSmHQaVFRB_X_ZQydusQn1WLWInkFfLgBUvw1-1zUELL1fa9HX4NQBNfEuWBUVil-ltZu1GOc01g_Uxipa2HquvxXmLoVRv8CzCCNiA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2115278539</pqid></control><display><type>article</type><title>Improved Stability of Atomic Layer Deposited Amorphous TiO2 Photoelectrode Coatings by Thermally Induced Oxygen Defects</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Hannula, Markku ; Ali-Löytty, Harri ; Lahtonen, Kimmo ; Sarlin, Essi ; Saari, Jesse ; Valden, Mika</creator><creatorcontrib>Hannula, Markku ; Ali-Löytty, Harri ; Lahtonen, Kimmo ; Sarlin, Essi ; Saari, Jesse ; Valden, Mika</creatorcontrib><description>Amorphous titanium dioxide (a-TiO2) combined with an electrocatalyst has shown to be a promising coating for stabilizing traditional semiconductor materials used in artificial photosynthesis for efficient photoelectrochemical solar-to-fuel energy conversion. In this study we report a detailed analysis of two methods of modifying an undoped thin film of atomic layer deposited (ALD) a-TiO2 without an electrocatalyst to affect its performance in water splitting reaction as a protective photoelectrode coating. The methods are high-temperature annealing in ultrahigh vacuum and atomic hydrogen exposure. A key feature in both methods is that they preserve the amorphous structure of the film. Special attention is paid to the changes in the molecular and electronic structure of a-TiO2 induced by these treatments. On the basis of the photoelectrochemical results, the a-TiO2 is susceptible to photocorrosion but significant improvement in stability is achieved after heat treatment in vacuum at temperatures above 500 °C. On the other hand, the hydrogen treatment does not increase the stability despite the ostensibly similar reduction of a-TiO2. The surface analysis allows us to interpret the improved stability to the thermally induced formation of O– species within a-TiO2 that are essentially electronic defects in the anionic framework.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.7b02938</identifier><identifier>PMID: 30270988</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Chemistry of materials, 2018-02, Vol.30 (4), p.1199-1208</ispartof><rights>Copyright © 2018 American Chemical Society 2018 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1110-7439</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids></links><search><creatorcontrib>Hannula, Markku</creatorcontrib><creatorcontrib>Ali-Löytty, Harri</creatorcontrib><creatorcontrib>Lahtonen, Kimmo</creatorcontrib><creatorcontrib>Sarlin, Essi</creatorcontrib><creatorcontrib>Saari, Jesse</creatorcontrib><creatorcontrib>Valden, Mika</creatorcontrib><title>Improved Stability of Atomic Layer Deposited Amorphous TiO2 Photoelectrode Coatings by Thermally Induced Oxygen Defects</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>Amorphous titanium dioxide (a-TiO2) combined with an electrocatalyst has shown to be a promising coating for stabilizing traditional semiconductor materials used in artificial photosynthesis for efficient photoelectrochemical solar-to-fuel energy conversion. In this study we report a detailed analysis of two methods of modifying an undoped thin film of atomic layer deposited (ALD) a-TiO2 without an electrocatalyst to affect its performance in water splitting reaction as a protective photoelectrode coating. The methods are high-temperature annealing in ultrahigh vacuum and atomic hydrogen exposure. A key feature in both methods is that they preserve the amorphous structure of the film. Special attention is paid to the changes in the molecular and electronic structure of a-TiO2 induced by these treatments. On the basis of the photoelectrochemical results, the a-TiO2 is susceptible to photocorrosion but significant improvement in stability is achieved after heat treatment in vacuum at temperatures above 500 °C. On the other hand, the hydrogen treatment does not increase the stability despite the ostensibly similar reduction of a-TiO2. The surface analysis allows us to interpret the improved stability to the thermally induced formation of O– species within a-TiO2 that are essentially electronic defects in the anionic framework.</description><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpVkd2LEzEUxYMobl39E4Q8-jI1H80keRFKXbVQqGB9DvlqJ8vMZEwyq_Pfm7JF8OnCvef84J4DwHuM1hgR_FHbvLadHwZdfFpzg4ik4gVYYUZQwxAiL8EKCcmbDWftHXiT8yNCuFrFa3BHEeFICrECv_fDlOKTd_BH0Sb0oSwwnuG2xCFYeNCLT_Czn2IOpWq2Q0xTF-cMT-FI4Pculuh7b0uKzsNd1CWMlwzNAk-dT4Pu-wXuRzfb6j3-WS5-rLBz1ee34NVZ99m_u8178PPLw2n3rTkcv-5320OjqRSlEZTYlmHEnGzRhmnaIto6yrETznJG8VkYIzmTRusNx7itjxmiid5I46Sh9B58euZOsxm8s34sSfdqSmHQaVFRB_X_ZQydusQn1WLWInkFfLgBUvw1-1zUELL1fa9HX4NQBNfEuWBUVil-ltZu1GOc01g_Uxipa2HquvxXmLoVRv8CzCCNiA</recordid><startdate>20180227</startdate><enddate>20180227</enddate><creator>Hannula, Markku</creator><creator>Ali-Löytty, Harri</creator><creator>Lahtonen, Kimmo</creator><creator>Sarlin, Essi</creator><creator>Saari, Jesse</creator><creator>Valden, Mika</creator><general>American Chemical Society</general><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1110-7439</orcidid></search><sort><creationdate>20180227</creationdate><title>Improved Stability of Atomic Layer Deposited Amorphous TiO2 Photoelectrode Coatings by Thermally Induced Oxygen Defects</title><author>Hannula, Markku ; Ali-Löytty, Harri ; Lahtonen, Kimmo ; Sarlin, Essi ; Saari, Jesse ; Valden, Mika</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a398t-832c65105d96045a36036d371d8dc7531f8bb9759baa47116027b2a2a49bd9b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hannula, Markku</creatorcontrib><creatorcontrib>Ali-Löytty, Harri</creatorcontrib><creatorcontrib>Lahtonen, Kimmo</creatorcontrib><creatorcontrib>Sarlin, Essi</creatorcontrib><creatorcontrib>Saari, Jesse</creatorcontrib><creatorcontrib>Valden, Mika</creatorcontrib><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hannula, Markku</au><au>Ali-Löytty, Harri</au><au>Lahtonen, Kimmo</au><au>Sarlin, Essi</au><au>Saari, Jesse</au><au>Valden, Mika</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Stability of Atomic Layer Deposited Amorphous TiO2 Photoelectrode Coatings by Thermally Induced Oxygen Defects</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2018-02-27</date><risdate>2018</risdate><volume>30</volume><issue>4</issue><spage>1199</spage><epage>1208</epage><pages>1199-1208</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Amorphous titanium dioxide (a-TiO2) combined with an electrocatalyst has shown to be a promising coating for stabilizing traditional semiconductor materials used in artificial photosynthesis for efficient photoelectrochemical solar-to-fuel energy conversion. In this study we report a detailed analysis of two methods of modifying an undoped thin film of atomic layer deposited (ALD) a-TiO2 without an electrocatalyst to affect its performance in water splitting reaction as a protective photoelectrode coating. The methods are high-temperature annealing in ultrahigh vacuum and atomic hydrogen exposure. A key feature in both methods is that they preserve the amorphous structure of the film. Special attention is paid to the changes in the molecular and electronic structure of a-TiO2 induced by these treatments. On the basis of the photoelectrochemical results, the a-TiO2 is susceptible to photocorrosion but significant improvement in stability is achieved after heat treatment in vacuum at temperatures above 500 °C. On the other hand, the hydrogen treatment does not increase the stability despite the ostensibly similar reduction of a-TiO2. The surface analysis allows us to interpret the improved stability to the thermally induced formation of O– species within a-TiO2 that are essentially electronic defects in the anionic framework.</abstract><pub>American Chemical Society</pub><pmid>30270988</pmid><doi>10.1021/acs.chemmater.7b02938</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1110-7439</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2018-02, Vol.30 (4), p.1199-1208
issn 0897-4756
1520-5002
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6156093
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Improved Stability of Atomic Layer Deposited Amorphous TiO2 Photoelectrode Coatings by Thermally Induced Oxygen Defects
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A02%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Stability%20of%20Atomic%20Layer%20Deposited%20Amorphous%20TiO2%20Photoelectrode%20Coatings%20by%20Thermally%20Induced%20Oxygen%20Defects&rft.jtitle=Chemistry%20of%20materials&rft.au=Hannula,%20Markku&rft.date=2018-02-27&rft.volume=30&rft.issue=4&rft.spage=1199&rft.epage=1208&rft.pages=1199-1208&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.7b02938&rft_dat=%3Cproquest_pubme%3E2115278539%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a398t-832c65105d96045a36036d371d8dc7531f8bb9759baa47116027b2a2a49bd9b33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2115278539&rft_id=info:pmid/30270988&rfr_iscdi=true