Loading…
Analysis, Nutrition, and Health Benefits of Tryptophan
Tryptophan is an essential plant-derived amino acid that is needed for the in vivo biosynthesis of proteins. After consumption, it is metabolically transformed to bioactive metabolites, including serotonin, melatonin, kynurenine, and the vitamin niacin (nicotinamide). This brief integrated overview...
Saved in:
Published in: | International Journal of Tryptophan Research 2018-01, Vol.11, p.1178646918802282-1178646918802282 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Tryptophan is an essential plant-derived amino acid that is needed for the in vivo biosynthesis of proteins. After consumption, it is metabolically transformed to bioactive metabolites, including serotonin, melatonin, kynurenine, and the vitamin niacin (nicotinamide). This brief integrated overview surveys and interprets our current knowledge of the reported multiple analytical methods for free and protein-bound tryptophan in pure proteins, protein-containing foods, and in human fluids and tissues, the nutritional significance of l-tryptophan and its isomer d-tryptophan in fortified infant foods and corn tortillas as well the possible function of tryptophan in the diagnosis and mitigation of multiple human diseases. Analytical methods include the use of acid ninhydrin, near-infrared reflectance spectroscopy, colorimetry, basic hydrolysis; acid hydrolysis of S-pyridylethylated proteins, and high-performance liquid and gas chromatography-mass spectrometry. Also covered are the nutritional values of tryptophan-fortified infant formulas and corn-based tortillas, safety of tryptophan for human consumption and the analysis of maize (corn), rice, and soybean plants that have been successfully genetically engineered to produce increasing tryptophan. Dietary tryptophan and its metabolites seem to have the potential to contribute to the therapy of autism, cardiovascular disease, cognitive function, chronic kidney disease, depression, inflammatory bowel disease, multiple sclerosis, sleep, social function, and microbial infections. Tryptophan can also facilitate the diagnosis of certain conditions such as human cataracts, colon neoplasms, renal cell carcinoma, and the prognosis of diabetic nephropathy. The described findings are not only of fundamental scientific interest but also have practical implications for agriculture, food processing, food safety, nutrition, and animal and human health. The collated information and suggested research need will hopefully facilitate and guide further studies needed to optimize the use of free and protein-bound tryptophan and metabolites to help improve animal and human nutrition and health. |
---|---|
ISSN: | 1178-6469 1178-6469 |
DOI: | 10.1177/1178646918802282 |