Loading…
A one-step procedure to probe the viscoelastic properties of cells by Atomic Force Microscopy
The increasingly recognised importance of viscoelastic properties of cells in pathological conditions requires rapid development of advanced cell microrheology technologies. Here, we present a novel Atomic Force Microscopy (AFM)-microrheology (AFM 2 ) method for measuring the viscoelastic properties...
Saved in:
Published in: | Scientific reports 2018-09, Vol.8 (1), p.14462-12, Article 14462 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c474t-eab6bb7bd92f0481c8c082fc804fc22b53d2dbe247d1ff83e3824d106d0da1ca3 |
---|---|
cites | cdi_FETCH-LOGICAL-c474t-eab6bb7bd92f0481c8c082fc804fc22b53d2dbe247d1ff83e3824d106d0da1ca3 |
container_end_page | 12 |
container_issue | 1 |
container_start_page | 14462 |
container_title | Scientific reports |
container_volume | 8 |
creator | Chim, Ya Hua Mason, Louise M. Rath, Nicola Olson, Michael F. Tassieri, Manlio Yin, Huabing |
description | The increasingly recognised importance of viscoelastic properties of cells in pathological conditions requires rapid development of advanced cell microrheology technologies. Here, we present a novel Atomic Force Microscopy (AFM)-microrheology (AFM
2
) method for measuring the viscoelastic properties in living cells, over a wide range of continuous frequencies (0.005 Hz ~ 200 Hz), from a simple stress-relaxation nanoindentation. Experimental data were directly analysed without the need for pre-conceived viscoelastic models. We show the method had an excellent agreement with conventional oscillatory bulk-rheology measurements in gels, opening a new avenue for viscoelastic characterisation of soft matter using minute quantity of materials (or cells). Using this capability, we investigate the viscoelastic responses of cells in association with cancer cell invasive activity modulated by two important molecular regulators (i.e. mutation of the p53 gene and Rho kinase activity). The analysis of elastic (
G
′(
ω
)) and viscous (
G
″(
ω
)) moduli of living cells has led to the discovery of a characteristic transitions of the loss tangent (
G
″(
ω
)/
G
′(
ω
)) in the low frequency range (0.005 Hz ~ 0.1 Hz) that is indicative of the capability for cell restructuring of F-actin network. Our method is ready to be implemented in conventional AFMs, providing a simple yet powerful tool for measuring the viscoelastic properties of living cells. |
doi_str_mv | 10.1038/s41598-018-32704-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6160452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2114702616</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-eab6bb7bd92f0481c8c082fc804fc22b53d2dbe247d1ff83e3824d106d0da1ca3</originalsourceid><addsrcrecordid>eNp9UU1P3DAUtCpQQVv-QA-VJS5cUuxnb-K9VFohtkUC9UKPleWPl92gbJzayUr77-uwFCgHfPGz38zY84aQz5x95UyoyyT5fKEKxlUhoGKyUB_IKTA5L0AAHL2qT8hZSg8srzksJF98JCeCQQmqEqfk95KGDos0YE_7GBz6MSIdwnSwudgg3TXJBWxNGho3XfcYhwYTDTV12LaJ2j1dDmGbu6sQHdK7xsWQOf3-EzmuTZvw7GmfkV-r6_urH8Xtz-83V8vbwslKDgUaW1pbWb-AmknFnXJMQe0Uk7UDsHPhwVsEWXle10qgUCA9Z6Vn3nBnxIx8O-j2o92id9gN0bS6j83WxL0OptH_d7pmo9dhp0te5jFBFrh4Eojhz4hp0NvsOrszHYYxaeBcVnlovMzQ8zfQhzDGLtubUAKkqniVUXBATaNIEevnz3CmpwD1IUCdA9SPAWqVSV9e23im_IsrA8QBkHKrW2N8efsd2b8Uyqej</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2113248717</pqid></control><display><type>article</type><title>A one-step procedure to probe the viscoelastic properties of cells by Atomic Force Microscopy</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Chim, Ya Hua ; Mason, Louise M. ; Rath, Nicola ; Olson, Michael F. ; Tassieri, Manlio ; Yin, Huabing</creator><creatorcontrib>Chim, Ya Hua ; Mason, Louise M. ; Rath, Nicola ; Olson, Michael F. ; Tassieri, Manlio ; Yin, Huabing</creatorcontrib><description>The increasingly recognised importance of viscoelastic properties of cells in pathological conditions requires rapid development of advanced cell microrheology technologies. Here, we present a novel Atomic Force Microscopy (AFM)-microrheology (AFM
2
) method for measuring the viscoelastic properties in living cells, over a wide range of continuous frequencies (0.005 Hz ~ 200 Hz), from a simple stress-relaxation nanoindentation. Experimental data were directly analysed without the need for pre-conceived viscoelastic models. We show the method had an excellent agreement with conventional oscillatory bulk-rheology measurements in gels, opening a new avenue for viscoelastic characterisation of soft matter using minute quantity of materials (or cells). Using this capability, we investigate the viscoelastic responses of cells in association with cancer cell invasive activity modulated by two important molecular regulators (i.e. mutation of the p53 gene and Rho kinase activity). The analysis of elastic (
G
′(
ω
)) and viscous (
G
″(
ω
)) moduli of living cells has led to the discovery of a characteristic transitions of the loss tangent (
G
″(
ω
)/
G
′(
ω
)) in the low frequency range (0.005 Hz ~ 0.1 Hz) that is indicative of the capability for cell restructuring of F-actin network. Our method is ready to be implemented in conventional AFMs, providing a simple yet powerful tool for measuring the viscoelastic properties of living cells.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-018-32704-8</identifier><identifier>PMID: 30262873</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 14/19 ; 14/3 ; 14/63 ; 142/126 ; 631/67 ; 631/80/84 ; Actin ; Atomic force microscopy ; Cancer ; Data processing ; Gels ; Humanities and Social Sciences ; Invasiveness ; Kinases ; Mechanical properties ; Microscopy ; multidisciplinary ; p53 Protein ; Rheology ; Rho-associated kinase ; Science ; Science (multidisciplinary) ; Viscoelasticity</subject><ispartof>Scientific reports, 2018-09, Vol.8 (1), p.14462-12, Article 14462</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-eab6bb7bd92f0481c8c082fc804fc22b53d2dbe247d1ff83e3824d106d0da1ca3</citedby><cites>FETCH-LOGICAL-c474t-eab6bb7bd92f0481c8c082fc804fc22b53d2dbe247d1ff83e3824d106d0da1ca3</cites><orcidid>0000-0003-3428-3507 ; 0000-0002-6807-0385 ; 0000-0001-7693-377X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2113248717/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2113248717?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30262873$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chim, Ya Hua</creatorcontrib><creatorcontrib>Mason, Louise M.</creatorcontrib><creatorcontrib>Rath, Nicola</creatorcontrib><creatorcontrib>Olson, Michael F.</creatorcontrib><creatorcontrib>Tassieri, Manlio</creatorcontrib><creatorcontrib>Yin, Huabing</creatorcontrib><title>A one-step procedure to probe the viscoelastic properties of cells by Atomic Force Microscopy</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The increasingly recognised importance of viscoelastic properties of cells in pathological conditions requires rapid development of advanced cell microrheology technologies. Here, we present a novel Atomic Force Microscopy (AFM)-microrheology (AFM
2
) method for measuring the viscoelastic properties in living cells, over a wide range of continuous frequencies (0.005 Hz ~ 200 Hz), from a simple stress-relaxation nanoindentation. Experimental data were directly analysed without the need for pre-conceived viscoelastic models. We show the method had an excellent agreement with conventional oscillatory bulk-rheology measurements in gels, opening a new avenue for viscoelastic characterisation of soft matter using minute quantity of materials (or cells). Using this capability, we investigate the viscoelastic responses of cells in association with cancer cell invasive activity modulated by two important molecular regulators (i.e. mutation of the p53 gene and Rho kinase activity). The analysis of elastic (
G
′(
ω
)) and viscous (
G
″(
ω
)) moduli of living cells has led to the discovery of a characteristic transitions of the loss tangent (
G
″(
ω
)/
G
′(
ω
)) in the low frequency range (0.005 Hz ~ 0.1 Hz) that is indicative of the capability for cell restructuring of F-actin network. Our method is ready to be implemented in conventional AFMs, providing a simple yet powerful tool for measuring the viscoelastic properties of living cells.</description><subject>13/1</subject><subject>14/19</subject><subject>14/3</subject><subject>14/63</subject><subject>142/126</subject><subject>631/67</subject><subject>631/80/84</subject><subject>Actin</subject><subject>Atomic force microscopy</subject><subject>Cancer</subject><subject>Data processing</subject><subject>Gels</subject><subject>Humanities and Social Sciences</subject><subject>Invasiveness</subject><subject>Kinases</subject><subject>Mechanical properties</subject><subject>Microscopy</subject><subject>multidisciplinary</subject><subject>p53 Protein</subject><subject>Rheology</subject><subject>Rho-associated kinase</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Viscoelasticity</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9UU1P3DAUtCpQQVv-QA-VJS5cUuxnb-K9VFohtkUC9UKPleWPl92gbJzayUr77-uwFCgHfPGz38zY84aQz5x95UyoyyT5fKEKxlUhoGKyUB_IKTA5L0AAHL2qT8hZSg8srzksJF98JCeCQQmqEqfk95KGDos0YE_7GBz6MSIdwnSwudgg3TXJBWxNGho3XfcYhwYTDTV12LaJ2j1dDmGbu6sQHdK7xsWQOf3-EzmuTZvw7GmfkV-r6_urH8Xtz-83V8vbwslKDgUaW1pbWb-AmknFnXJMQe0Uk7UDsHPhwVsEWXle10qgUCA9Z6Vn3nBnxIx8O-j2o92id9gN0bS6j83WxL0OptH_d7pmo9dhp0te5jFBFrh4Eojhz4hp0NvsOrszHYYxaeBcVnlovMzQ8zfQhzDGLtubUAKkqniVUXBATaNIEevnz3CmpwD1IUCdA9SPAWqVSV9e23im_IsrA8QBkHKrW2N8efsd2b8Uyqej</recordid><startdate>20180927</startdate><enddate>20180927</enddate><creator>Chim, Ya Hua</creator><creator>Mason, Louise M.</creator><creator>Rath, Nicola</creator><creator>Olson, Michael F.</creator><creator>Tassieri, Manlio</creator><creator>Yin, Huabing</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3428-3507</orcidid><orcidid>https://orcid.org/0000-0002-6807-0385</orcidid><orcidid>https://orcid.org/0000-0001-7693-377X</orcidid></search><sort><creationdate>20180927</creationdate><title>A one-step procedure to probe the viscoelastic properties of cells by Atomic Force Microscopy</title><author>Chim, Ya Hua ; Mason, Louise M. ; Rath, Nicola ; Olson, Michael F. ; Tassieri, Manlio ; Yin, Huabing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-eab6bb7bd92f0481c8c082fc804fc22b53d2dbe247d1ff83e3824d106d0da1ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>13/1</topic><topic>14/19</topic><topic>14/3</topic><topic>14/63</topic><topic>142/126</topic><topic>631/67</topic><topic>631/80/84</topic><topic>Actin</topic><topic>Atomic force microscopy</topic><topic>Cancer</topic><topic>Data processing</topic><topic>Gels</topic><topic>Humanities and Social Sciences</topic><topic>Invasiveness</topic><topic>Kinases</topic><topic>Mechanical properties</topic><topic>Microscopy</topic><topic>multidisciplinary</topic><topic>p53 Protein</topic><topic>Rheology</topic><topic>Rho-associated kinase</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chim, Ya Hua</creatorcontrib><creatorcontrib>Mason, Louise M.</creatorcontrib><creatorcontrib>Rath, Nicola</creatorcontrib><creatorcontrib>Olson, Michael F.</creatorcontrib><creatorcontrib>Tassieri, Manlio</creatorcontrib><creatorcontrib>Yin, Huabing</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Journals (ProQuest Database)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chim, Ya Hua</au><au>Mason, Louise M.</au><au>Rath, Nicola</au><au>Olson, Michael F.</au><au>Tassieri, Manlio</au><au>Yin, Huabing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A one-step procedure to probe the viscoelastic properties of cells by Atomic Force Microscopy</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2018-09-27</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>14462</spage><epage>12</epage><pages>14462-12</pages><artnum>14462</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The increasingly recognised importance of viscoelastic properties of cells in pathological conditions requires rapid development of advanced cell microrheology technologies. Here, we present a novel Atomic Force Microscopy (AFM)-microrheology (AFM
2
) method for measuring the viscoelastic properties in living cells, over a wide range of continuous frequencies (0.005 Hz ~ 200 Hz), from a simple stress-relaxation nanoindentation. Experimental data were directly analysed without the need for pre-conceived viscoelastic models. We show the method had an excellent agreement with conventional oscillatory bulk-rheology measurements in gels, opening a new avenue for viscoelastic characterisation of soft matter using minute quantity of materials (or cells). Using this capability, we investigate the viscoelastic responses of cells in association with cancer cell invasive activity modulated by two important molecular regulators (i.e. mutation of the p53 gene and Rho kinase activity). The analysis of elastic (
G
′(
ω
)) and viscous (
G
″(
ω
)) moduli of living cells has led to the discovery of a characteristic transitions of the loss tangent (
G
″(
ω
)/
G
′(
ω
)) in the low frequency range (0.005 Hz ~ 0.1 Hz) that is indicative of the capability for cell restructuring of F-actin network. Our method is ready to be implemented in conventional AFMs, providing a simple yet powerful tool for measuring the viscoelastic properties of living cells.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30262873</pmid><doi>10.1038/s41598-018-32704-8</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3428-3507</orcidid><orcidid>https://orcid.org/0000-0002-6807-0385</orcidid><orcidid>https://orcid.org/0000-0001-7693-377X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2018-09, Vol.8 (1), p.14462-12, Article 14462 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6160452 |
source | Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 13/1 14/19 14/3 14/63 142/126 631/67 631/80/84 Actin Atomic force microscopy Cancer Data processing Gels Humanities and Social Sciences Invasiveness Kinases Mechanical properties Microscopy multidisciplinary p53 Protein Rheology Rho-associated kinase Science Science (multidisciplinary) Viscoelasticity |
title | A one-step procedure to probe the viscoelastic properties of cells by Atomic Force Microscopy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A33%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20one-step%20procedure%20to%20probe%20the%20viscoelastic%20properties%20of%20cells%20by%20Atomic%20Force%20Microscopy&rft.jtitle=Scientific%20reports&rft.au=Chim,%20Ya%20Hua&rft.date=2018-09-27&rft.volume=8&rft.issue=1&rft.spage=14462&rft.epage=12&rft.pages=14462-12&rft.artnum=14462&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-018-32704-8&rft_dat=%3Cproquest_pubme%3E2114702616%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-eab6bb7bd92f0481c8c082fc804fc22b53d2dbe247d1ff83e3824d106d0da1ca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2113248717&rft_id=info:pmid/30262873&rfr_iscdi=true |