Loading…
Functional interplay between c‐Myc and Max in B lymphocyte differentiation
The Myc family of oncogenic transcription factors regulates myriad cellular functions. Myc proteins contain a basic region/helix‐loop‐helix/leucine zipper domain that mediates DNA binding and heterodimerization with its partner Max. Among the Myc proteins, c‐Myc is the most widely expressed and rele...
Saved in:
Published in: | EMBO reports 2018-10, Vol.19 (10), p.n/a |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5130-fabddcd329ec41d5fcd0559be8f32c5933fa4e8354d1483b1a4927a6941ec1c63 |
---|---|
cites | cdi_FETCH-LOGICAL-c5130-fabddcd329ec41d5fcd0559be8f32c5933fa4e8354d1483b1a4927a6941ec1c63 |
container_end_page | n/a |
container_issue | 10 |
container_start_page | |
container_title | EMBO reports |
container_volume | 19 |
creator | Pérez‐Olivares, Mercedes Trento, Alfonsina Rodriguez‐Acebes, Sara González‐Acosta, Daniel Fernández‐Antorán, David Román‐García, Sara Martinez, Dolores López‐Briones, Tania Torroja, Carlos Carrasco, Yolanda R Méndez, Juan Moreno de Alborán, Ignacio |
description | The Myc family of oncogenic transcription factors regulates myriad cellular functions. Myc proteins contain a basic region/helix‐loop‐helix/leucine zipper domain that mediates DNA binding and heterodimerization with its partner Max. Among the Myc proteins, c‐Myc is the most widely expressed and relevant in primary B lymphocytes. There is evidence suggesting that c‐Myc can perform some of its functions in the absence of Max in different cellular contexts. However, the functional
in vivo
interplay between c‐Myc and Max during B lymphocyte differentiation is not well understood. Using
in vivo
and
ex vivo
models, we show that while c‐Myc requires Max in primary B lymphocytes, several key biological processes, such as cell differentiation and DNA replication, can initially progress without the formation of c‐Myc/Max heterodimers. We also describe that B lymphocytes lacking Myc, Max, or both show upregulation of signaling pathways associated with the B‐cell receptor. These data suggest that c‐Myc/Max heterodimers are not essential for the initiation of a subset of important biological processes in B lymphocytes, but are required for fine‐tuning the initial response after activation.
Synopsis
c‐Myc heterodimerizes with Max to transcriptionally regulate target genes. This study shows that essential biological functions such as proliferation or differentiation can be initiated in the absence of both factors in primary B lymphocytes.
B cell progenitors can differentiate in the absence of Myc and Max.
DNA replication is impaired in c‐Myc‐deficient B lymphocytes.
c‐Myc protein levels are dependent on Max.
Max has inhibitory effects in the absence of c‐Myc.
Graphical Abstract
c‐Myc heterodimerizes with Max to transcriptionally regulate target genes. This study shows that essential biological functions such as proliferation or differentiation can be initiated in the absence of both factors in primary B lymphocytes. |
doi_str_mv | 10.15252/embr.201845770 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6172472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2091235720</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5130-fabddcd329ec41d5fcd0559be8f32c5933fa4e8354d1483b1a4927a6941ec1c63</originalsourceid><addsrcrecordid>eNqFkU9rFDEYh4MotlbP3mTAi5dt8-bPzMSDYEurwi6CKHgLmeSdNmUmsyYz1rn5EfyMfhKz7rpWQTwlkOd9-L35EfIY6DFIJtkJ9k08ZhRqIauK3iGHIEq14FDVd3d3xuDjAXmQ0jWlVKqqvk8OOAVWKiYPyfJiCnb0QzBd4cOIcd2ZuWhwvEEMhf3-9dtqtoUJrliZL5koTotu7tdXg51HLJxvW4wYRm82jofkXmu6hI925xH5cHH-_uz1Yvn21Zuzl8uFlcDpojWNc9ZxptAKcLK1jkqpGqxbzqxUnLdGYM2lcCBq3oARilWmVALQgi35EXmx9a6npkdnc4BoOr2Ovjdx1oPx-s-X4K_05fBZl1AxUbEseLYTxOHThGnUvU8Wu84EHKakGVXAuKwYzejTv9DrYYr5uzIFUHJWK7FJdLKlbBxSitjuwwDVP5vSm6b0vqk88eT2Dnv-VzUZeL4FbnyH8_98-nx1-u62nW6HU54Llxh_p_5XoB9-frID</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116328946</pqid></control><display><type>article</type><title>Functional interplay between c‐Myc and Max in B lymphocyte differentiation</title><source>PubMed Central</source><creator>Pérez‐Olivares, Mercedes ; Trento, Alfonsina ; Rodriguez‐Acebes, Sara ; González‐Acosta, Daniel ; Fernández‐Antorán, David ; Román‐García, Sara ; Martinez, Dolores ; López‐Briones, Tania ; Torroja, Carlos ; Carrasco, Yolanda R ; Méndez, Juan ; Moreno de Alborán, Ignacio</creator><creatorcontrib>Pérez‐Olivares, Mercedes ; Trento, Alfonsina ; Rodriguez‐Acebes, Sara ; González‐Acosta, Daniel ; Fernández‐Antorán, David ; Román‐García, Sara ; Martinez, Dolores ; López‐Briones, Tania ; Torroja, Carlos ; Carrasco, Yolanda R ; Méndez, Juan ; Moreno de Alborán, Ignacio</creatorcontrib><description>The Myc family of oncogenic transcription factors regulates myriad cellular functions. Myc proteins contain a basic region/helix‐loop‐helix/leucine zipper domain that mediates DNA binding and heterodimerization with its partner Max. Among the Myc proteins, c‐Myc is the most widely expressed and relevant in primary B lymphocytes. There is evidence suggesting that c‐Myc can perform some of its functions in the absence of Max in different cellular contexts. However, the functional
in vivo
interplay between c‐Myc and Max during B lymphocyte differentiation is not well understood. Using
in vivo
and
ex vivo
models, we show that while c‐Myc requires Max in primary B lymphocytes, several key biological processes, such as cell differentiation and DNA replication, can initially progress without the formation of c‐Myc/Max heterodimers. We also describe that B lymphocytes lacking Myc, Max, or both show upregulation of signaling pathways associated with the B‐cell receptor. These data suggest that c‐Myc/Max heterodimers are not essential for the initiation of a subset of important biological processes in B lymphocytes, but are required for fine‐tuning the initial response after activation.
Synopsis
c‐Myc heterodimerizes with Max to transcriptionally regulate target genes. This study shows that essential biological functions such as proliferation or differentiation can be initiated in the absence of both factors in primary B lymphocytes.
B cell progenitors can differentiate in the absence of Myc and Max.
DNA replication is impaired in c‐Myc‐deficient B lymphocytes.
c‐Myc protein levels are dependent on Max.
Max has inhibitory effects in the absence of c‐Myc.
Graphical Abstract
c‐Myc heterodimerizes with Max to transcriptionally regulate target genes. This study shows that essential biological functions such as proliferation or differentiation can be initiated in the absence of both factors in primary B lymphocytes.</description><identifier>ISSN: 1469-221X</identifier><identifier>EISSN: 1469-3178</identifier><identifier>DOI: 10.15252/embr.201845770</identifier><identifier>PMID: 30126925</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Amino Acid Sequence - genetics ; Animals ; B lymphocytes ; B-Lymphocytes - chemistry ; B-Lymphocytes - metabolism ; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - chemistry ; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - genetics ; Biological activity ; Cell differentiation ; Cell Differentiation - genetics ; c‐Myc ; Deoxyribonucleic acid ; Differentiation (biology) ; Dimerization ; DNA ; DNA biosynthesis ; DNA Replication - genetics ; DNA-Binding Proteins - chemistry ; DNA-Binding Proteins - genetics ; EMBO11 ; EMBO19 ; EMBO37 ; Helix-Loop-Helix Motifs - genetics ; Humans ; Leucine ; Leucine zipper proteins ; Leucine Zippers - genetics ; Lymphocytes ; Lymphocytes B ; Max ; Mice ; Myc protein ; Protein Binding - genetics ; Proteins ; Proto-Oncogene Proteins c-myc - chemistry ; Proto-Oncogene Proteins c-myc - genetics ; Replication ; Scientific Report ; Scientific Reports ; Transcription factors ; Transcriptional Activation - genetics</subject><ispartof>EMBO reports, 2018-10, Vol.19 (10), p.n/a</ispartof><rights>The Author(s) 2018</rights><rights>2018 The Authors</rights><rights>2018 The Authors.</rights><rights>2018 EMBO</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5130-fabddcd329ec41d5fcd0559be8f32c5933fa4e8354d1483b1a4927a6941ec1c63</citedby><cites>FETCH-LOGICAL-c5130-fabddcd329ec41d5fcd0559be8f32c5933fa4e8354d1483b1a4927a6941ec1c63</cites><orcidid>0000-0001-9262-1282</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6172472/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6172472/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30126925$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pérez‐Olivares, Mercedes</creatorcontrib><creatorcontrib>Trento, Alfonsina</creatorcontrib><creatorcontrib>Rodriguez‐Acebes, Sara</creatorcontrib><creatorcontrib>González‐Acosta, Daniel</creatorcontrib><creatorcontrib>Fernández‐Antorán, David</creatorcontrib><creatorcontrib>Román‐García, Sara</creatorcontrib><creatorcontrib>Martinez, Dolores</creatorcontrib><creatorcontrib>López‐Briones, Tania</creatorcontrib><creatorcontrib>Torroja, Carlos</creatorcontrib><creatorcontrib>Carrasco, Yolanda R</creatorcontrib><creatorcontrib>Méndez, Juan</creatorcontrib><creatorcontrib>Moreno de Alborán, Ignacio</creatorcontrib><title>Functional interplay between c‐Myc and Max in B lymphocyte differentiation</title><title>EMBO reports</title><addtitle>EMBO Rep</addtitle><addtitle>EMBO Rep</addtitle><description>The Myc family of oncogenic transcription factors regulates myriad cellular functions. Myc proteins contain a basic region/helix‐loop‐helix/leucine zipper domain that mediates DNA binding and heterodimerization with its partner Max. Among the Myc proteins, c‐Myc is the most widely expressed and relevant in primary B lymphocytes. There is evidence suggesting that c‐Myc can perform some of its functions in the absence of Max in different cellular contexts. However, the functional
in vivo
interplay between c‐Myc and Max during B lymphocyte differentiation is not well understood. Using
in vivo
and
ex vivo
models, we show that while c‐Myc requires Max in primary B lymphocytes, several key biological processes, such as cell differentiation and DNA replication, can initially progress without the formation of c‐Myc/Max heterodimers. We also describe that B lymphocytes lacking Myc, Max, or both show upregulation of signaling pathways associated with the B‐cell receptor. These data suggest that c‐Myc/Max heterodimers are not essential for the initiation of a subset of important biological processes in B lymphocytes, but are required for fine‐tuning the initial response after activation.
Synopsis
c‐Myc heterodimerizes with Max to transcriptionally regulate target genes. This study shows that essential biological functions such as proliferation or differentiation can be initiated in the absence of both factors in primary B lymphocytes.
B cell progenitors can differentiate in the absence of Myc and Max.
DNA replication is impaired in c‐Myc‐deficient B lymphocytes.
c‐Myc protein levels are dependent on Max.
Max has inhibitory effects in the absence of c‐Myc.
Graphical Abstract
c‐Myc heterodimerizes with Max to transcriptionally regulate target genes. This study shows that essential biological functions such as proliferation or differentiation can be initiated in the absence of both factors in primary B lymphocytes.</description><subject>Amino Acid Sequence - genetics</subject><subject>Animals</subject><subject>B lymphocytes</subject><subject>B-Lymphocytes - chemistry</subject><subject>B-Lymphocytes - metabolism</subject><subject>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - chemistry</subject><subject>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - genetics</subject><subject>Biological activity</subject><subject>Cell differentiation</subject><subject>Cell Differentiation - genetics</subject><subject>c‐Myc</subject><subject>Deoxyribonucleic acid</subject><subject>Differentiation (biology)</subject><subject>Dimerization</subject><subject>DNA</subject><subject>DNA biosynthesis</subject><subject>DNA Replication - genetics</subject><subject>DNA-Binding Proteins - chemistry</subject><subject>DNA-Binding Proteins - genetics</subject><subject>EMBO11</subject><subject>EMBO19</subject><subject>EMBO37</subject><subject>Helix-Loop-Helix Motifs - genetics</subject><subject>Humans</subject><subject>Leucine</subject><subject>Leucine zipper proteins</subject><subject>Leucine Zippers - genetics</subject><subject>Lymphocytes</subject><subject>Lymphocytes B</subject><subject>Max</subject><subject>Mice</subject><subject>Myc protein</subject><subject>Protein Binding - genetics</subject><subject>Proteins</subject><subject>Proto-Oncogene Proteins c-myc - chemistry</subject><subject>Proto-Oncogene Proteins c-myc - genetics</subject><subject>Replication</subject><subject>Scientific Report</subject><subject>Scientific Reports</subject><subject>Transcription factors</subject><subject>Transcriptional Activation - genetics</subject><issn>1469-221X</issn><issn>1469-3178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkU9rFDEYh4MotlbP3mTAi5dt8-bPzMSDYEurwi6CKHgLmeSdNmUmsyYz1rn5EfyMfhKz7rpWQTwlkOd9-L35EfIY6DFIJtkJ9k08ZhRqIauK3iGHIEq14FDVd3d3xuDjAXmQ0jWlVKqqvk8OOAVWKiYPyfJiCnb0QzBd4cOIcd2ZuWhwvEEMhf3-9dtqtoUJrliZL5koTotu7tdXg51HLJxvW4wYRm82jofkXmu6hI925xH5cHH-_uz1Yvn21Zuzl8uFlcDpojWNc9ZxptAKcLK1jkqpGqxbzqxUnLdGYM2lcCBq3oARilWmVALQgi35EXmx9a6npkdnc4BoOr2Ovjdx1oPx-s-X4K_05fBZl1AxUbEseLYTxOHThGnUvU8Wu84EHKakGVXAuKwYzejTv9DrYYr5uzIFUHJWK7FJdLKlbBxSitjuwwDVP5vSm6b0vqk88eT2Dnv-VzUZeL4FbnyH8_98-nx1-u62nW6HU54Llxh_p_5XoB9-frID</recordid><startdate>201810</startdate><enddate>201810</enddate><creator>Pérez‐Olivares, Mercedes</creator><creator>Trento, Alfonsina</creator><creator>Rodriguez‐Acebes, Sara</creator><creator>González‐Acosta, Daniel</creator><creator>Fernández‐Antorán, David</creator><creator>Román‐García, Sara</creator><creator>Martinez, Dolores</creator><creator>López‐Briones, Tania</creator><creator>Torroja, Carlos</creator><creator>Carrasco, Yolanda R</creator><creator>Méndez, Juan</creator><creator>Moreno de Alborán, Ignacio</creator><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><general>John Wiley and Sons Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9262-1282</orcidid></search><sort><creationdate>201810</creationdate><title>Functional interplay between c‐Myc and Max in B lymphocyte differentiation</title><author>Pérez‐Olivares, Mercedes ; Trento, Alfonsina ; Rodriguez‐Acebes, Sara ; González‐Acosta, Daniel ; Fernández‐Antorán, David ; Román‐García, Sara ; Martinez, Dolores ; López‐Briones, Tania ; Torroja, Carlos ; Carrasco, Yolanda R ; Méndez, Juan ; Moreno de Alborán, Ignacio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5130-fabddcd329ec41d5fcd0559be8f32c5933fa4e8354d1483b1a4927a6941ec1c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Amino Acid Sequence - genetics</topic><topic>Animals</topic><topic>B lymphocytes</topic><topic>B-Lymphocytes - chemistry</topic><topic>B-Lymphocytes - metabolism</topic><topic>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - chemistry</topic><topic>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - genetics</topic><topic>Biological activity</topic><topic>Cell differentiation</topic><topic>Cell Differentiation - genetics</topic><topic>c‐Myc</topic><topic>Deoxyribonucleic acid</topic><topic>Differentiation (biology)</topic><topic>Dimerization</topic><topic>DNA</topic><topic>DNA biosynthesis</topic><topic>DNA Replication - genetics</topic><topic>DNA-Binding Proteins - chemistry</topic><topic>DNA-Binding Proteins - genetics</topic><topic>EMBO11</topic><topic>EMBO19</topic><topic>EMBO37</topic><topic>Helix-Loop-Helix Motifs - genetics</topic><topic>Humans</topic><topic>Leucine</topic><topic>Leucine zipper proteins</topic><topic>Leucine Zippers - genetics</topic><topic>Lymphocytes</topic><topic>Lymphocytes B</topic><topic>Max</topic><topic>Mice</topic><topic>Myc protein</topic><topic>Protein Binding - genetics</topic><topic>Proteins</topic><topic>Proto-Oncogene Proteins c-myc - chemistry</topic><topic>Proto-Oncogene Proteins c-myc - genetics</topic><topic>Replication</topic><topic>Scientific Report</topic><topic>Scientific Reports</topic><topic>Transcription factors</topic><topic>Transcriptional Activation - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pérez‐Olivares, Mercedes</creatorcontrib><creatorcontrib>Trento, Alfonsina</creatorcontrib><creatorcontrib>Rodriguez‐Acebes, Sara</creatorcontrib><creatorcontrib>González‐Acosta, Daniel</creatorcontrib><creatorcontrib>Fernández‐Antorán, David</creatorcontrib><creatorcontrib>Román‐García, Sara</creatorcontrib><creatorcontrib>Martinez, Dolores</creatorcontrib><creatorcontrib>López‐Briones, Tania</creatorcontrib><creatorcontrib>Torroja, Carlos</creatorcontrib><creatorcontrib>Carrasco, Yolanda R</creatorcontrib><creatorcontrib>Méndez, Juan</creatorcontrib><creatorcontrib>Moreno de Alborán, Ignacio</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>EMBO reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pérez‐Olivares, Mercedes</au><au>Trento, Alfonsina</au><au>Rodriguez‐Acebes, Sara</au><au>González‐Acosta, Daniel</au><au>Fernández‐Antorán, David</au><au>Román‐García, Sara</au><au>Martinez, Dolores</au><au>López‐Briones, Tania</au><au>Torroja, Carlos</au><au>Carrasco, Yolanda R</au><au>Méndez, Juan</au><au>Moreno de Alborán, Ignacio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional interplay between c‐Myc and Max in B lymphocyte differentiation</atitle><jtitle>EMBO reports</jtitle><stitle>EMBO Rep</stitle><addtitle>EMBO Rep</addtitle><date>2018-10</date><risdate>2018</risdate><volume>19</volume><issue>10</issue><epage>n/a</epage><issn>1469-221X</issn><eissn>1469-3178</eissn><abstract>The Myc family of oncogenic transcription factors regulates myriad cellular functions. Myc proteins contain a basic region/helix‐loop‐helix/leucine zipper domain that mediates DNA binding and heterodimerization with its partner Max. Among the Myc proteins, c‐Myc is the most widely expressed and relevant in primary B lymphocytes. There is evidence suggesting that c‐Myc can perform some of its functions in the absence of Max in different cellular contexts. However, the functional
in vivo
interplay between c‐Myc and Max during B lymphocyte differentiation is not well understood. Using
in vivo
and
ex vivo
models, we show that while c‐Myc requires Max in primary B lymphocytes, several key biological processes, such as cell differentiation and DNA replication, can initially progress without the formation of c‐Myc/Max heterodimers. We also describe that B lymphocytes lacking Myc, Max, or both show upregulation of signaling pathways associated with the B‐cell receptor. These data suggest that c‐Myc/Max heterodimers are not essential for the initiation of a subset of important biological processes in B lymphocytes, but are required for fine‐tuning the initial response after activation.
Synopsis
c‐Myc heterodimerizes with Max to transcriptionally regulate target genes. This study shows that essential biological functions such as proliferation or differentiation can be initiated in the absence of both factors in primary B lymphocytes.
B cell progenitors can differentiate in the absence of Myc and Max.
DNA replication is impaired in c‐Myc‐deficient B lymphocytes.
c‐Myc protein levels are dependent on Max.
Max has inhibitory effects in the absence of c‐Myc.
Graphical Abstract
c‐Myc heterodimerizes with Max to transcriptionally regulate target genes. This study shows that essential biological functions such as proliferation or differentiation can be initiated in the absence of both factors in primary B lymphocytes.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30126925</pmid><doi>10.15252/embr.201845770</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9262-1282</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1469-221X |
ispartof | EMBO reports, 2018-10, Vol.19 (10), p.n/a |
issn | 1469-221X 1469-3178 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6172472 |
source | PubMed Central |
subjects | Amino Acid Sequence - genetics Animals B lymphocytes B-Lymphocytes - chemistry B-Lymphocytes - metabolism Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - chemistry Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - genetics Biological activity Cell differentiation Cell Differentiation - genetics c‐Myc Deoxyribonucleic acid Differentiation (biology) Dimerization DNA DNA biosynthesis DNA Replication - genetics DNA-Binding Proteins - chemistry DNA-Binding Proteins - genetics EMBO11 EMBO19 EMBO37 Helix-Loop-Helix Motifs - genetics Humans Leucine Leucine zipper proteins Leucine Zippers - genetics Lymphocytes Lymphocytes B Max Mice Myc protein Protein Binding - genetics Proteins Proto-Oncogene Proteins c-myc - chemistry Proto-Oncogene Proteins c-myc - genetics Replication Scientific Report Scientific Reports Transcription factors Transcriptional Activation - genetics |
title | Functional interplay between c‐Myc and Max in B lymphocyte differentiation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A26%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20interplay%20between%20c%E2%80%90Myc%20and%20Max%20in%20B%20lymphocyte%20differentiation&rft.jtitle=EMBO%20reports&rft.au=P%C3%A9rez%E2%80%90Olivares,%20Mercedes&rft.date=2018-10&rft.volume=19&rft.issue=10&rft.epage=n/a&rft.issn=1469-221X&rft.eissn=1469-3178&rft_id=info:doi/10.15252/embr.201845770&rft_dat=%3Cproquest_pubme%3E2091235720%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5130-fabddcd329ec41d5fcd0559be8f32c5933fa4e8354d1483b1a4927a6941ec1c63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2116328946&rft_id=info:pmid/30126925&rfr_iscdi=true |