Loading…

Functional interplay between c‐Myc and Max in B lymphocyte differentiation

The Myc family of oncogenic transcription factors regulates myriad cellular functions. Myc proteins contain a basic region/helix‐loop‐helix/leucine zipper domain that mediates DNA binding and heterodimerization with its partner Max. Among the Myc proteins, c‐Myc is the most widely expressed and rele...

Full description

Saved in:
Bibliographic Details
Published in:EMBO reports 2018-10, Vol.19 (10), p.n/a
Main Authors: Pérez‐Olivares, Mercedes, Trento, Alfonsina, Rodriguez‐Acebes, Sara, González‐Acosta, Daniel, Fernández‐Antorán, David, Román‐García, Sara, Martinez, Dolores, López‐Briones, Tania, Torroja, Carlos, Carrasco, Yolanda R, Méndez, Juan, Moreno de Alborán, Ignacio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5130-fabddcd329ec41d5fcd0559be8f32c5933fa4e8354d1483b1a4927a6941ec1c63
cites cdi_FETCH-LOGICAL-c5130-fabddcd329ec41d5fcd0559be8f32c5933fa4e8354d1483b1a4927a6941ec1c63
container_end_page n/a
container_issue 10
container_start_page
container_title EMBO reports
container_volume 19
creator Pérez‐Olivares, Mercedes
Trento, Alfonsina
Rodriguez‐Acebes, Sara
González‐Acosta, Daniel
Fernández‐Antorán, David
Román‐García, Sara
Martinez, Dolores
López‐Briones, Tania
Torroja, Carlos
Carrasco, Yolanda R
Méndez, Juan
Moreno de Alborán, Ignacio
description The Myc family of oncogenic transcription factors regulates myriad cellular functions. Myc proteins contain a basic region/helix‐loop‐helix/leucine zipper domain that mediates DNA binding and heterodimerization with its partner Max. Among the Myc proteins, c‐Myc is the most widely expressed and relevant in primary B lymphocytes. There is evidence suggesting that c‐Myc can perform some of its functions in the absence of Max in different cellular contexts. However, the functional in vivo interplay between c‐Myc and Max during B lymphocyte differentiation is not well understood. Using in vivo and ex vivo models, we show that while c‐Myc requires Max in primary B lymphocytes, several key biological processes, such as cell differentiation and DNA replication, can initially progress without the formation of c‐Myc/Max heterodimers. We also describe that B lymphocytes lacking Myc, Max, or both show upregulation of signaling pathways associated with the B‐cell receptor. These data suggest that c‐Myc/Max heterodimers are not essential for the initiation of a subset of important biological processes in B lymphocytes, but are required for fine‐tuning the initial response after activation. Synopsis c‐Myc heterodimerizes with Max to transcriptionally regulate target genes. This study shows that essential biological functions such as proliferation or differentiation can be initiated in the absence of both factors in primary B lymphocytes. B cell progenitors can differentiate in the absence of Myc and Max. DNA replication is impaired in c‐Myc‐deficient B lymphocytes. c‐Myc protein levels are dependent on Max. Max has inhibitory effects in the absence of c‐Myc. Graphical Abstract c‐Myc heterodimerizes with Max to transcriptionally regulate target genes. This study shows that essential biological functions such as proliferation or differentiation can be initiated in the absence of both factors in primary B lymphocytes.
doi_str_mv 10.15252/embr.201845770
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6172472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2091235720</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5130-fabddcd329ec41d5fcd0559be8f32c5933fa4e8354d1483b1a4927a6941ec1c63</originalsourceid><addsrcrecordid>eNqFkU9rFDEYh4MotlbP3mTAi5dt8-bPzMSDYEurwi6CKHgLmeSdNmUmsyYz1rn5EfyMfhKz7rpWQTwlkOd9-L35EfIY6DFIJtkJ9k08ZhRqIauK3iGHIEq14FDVd3d3xuDjAXmQ0jWlVKqqvk8OOAVWKiYPyfJiCnb0QzBd4cOIcd2ZuWhwvEEMhf3-9dtqtoUJrliZL5koTotu7tdXg51HLJxvW4wYRm82jofkXmu6hI925xH5cHH-_uz1Yvn21Zuzl8uFlcDpojWNc9ZxptAKcLK1jkqpGqxbzqxUnLdGYM2lcCBq3oARilWmVALQgi35EXmx9a6npkdnc4BoOr2Ovjdx1oPx-s-X4K_05fBZl1AxUbEseLYTxOHThGnUvU8Wu84EHKakGVXAuKwYzejTv9DrYYr5uzIFUHJWK7FJdLKlbBxSitjuwwDVP5vSm6b0vqk88eT2Dnv-VzUZeL4FbnyH8_98-nx1-u62nW6HU54Llxh_p_5XoB9-frID</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116328946</pqid></control><display><type>article</type><title>Functional interplay between c‐Myc and Max in B lymphocyte differentiation</title><source>PubMed Central</source><creator>Pérez‐Olivares, Mercedes ; Trento, Alfonsina ; Rodriguez‐Acebes, Sara ; González‐Acosta, Daniel ; Fernández‐Antorán, David ; Román‐García, Sara ; Martinez, Dolores ; López‐Briones, Tania ; Torroja, Carlos ; Carrasco, Yolanda R ; Méndez, Juan ; Moreno de Alborán, Ignacio</creator><creatorcontrib>Pérez‐Olivares, Mercedes ; Trento, Alfonsina ; Rodriguez‐Acebes, Sara ; González‐Acosta, Daniel ; Fernández‐Antorán, David ; Román‐García, Sara ; Martinez, Dolores ; López‐Briones, Tania ; Torroja, Carlos ; Carrasco, Yolanda R ; Méndez, Juan ; Moreno de Alborán, Ignacio</creatorcontrib><description>The Myc family of oncogenic transcription factors regulates myriad cellular functions. Myc proteins contain a basic region/helix‐loop‐helix/leucine zipper domain that mediates DNA binding and heterodimerization with its partner Max. Among the Myc proteins, c‐Myc is the most widely expressed and relevant in primary B lymphocytes. There is evidence suggesting that c‐Myc can perform some of its functions in the absence of Max in different cellular contexts. However, the functional in vivo interplay between c‐Myc and Max during B lymphocyte differentiation is not well understood. Using in vivo and ex vivo models, we show that while c‐Myc requires Max in primary B lymphocytes, several key biological processes, such as cell differentiation and DNA replication, can initially progress without the formation of c‐Myc/Max heterodimers. We also describe that B lymphocytes lacking Myc, Max, or both show upregulation of signaling pathways associated with the B‐cell receptor. These data suggest that c‐Myc/Max heterodimers are not essential for the initiation of a subset of important biological processes in B lymphocytes, but are required for fine‐tuning the initial response after activation. Synopsis c‐Myc heterodimerizes with Max to transcriptionally regulate target genes. This study shows that essential biological functions such as proliferation or differentiation can be initiated in the absence of both factors in primary B lymphocytes. B cell progenitors can differentiate in the absence of Myc and Max. DNA replication is impaired in c‐Myc‐deficient B lymphocytes. c‐Myc protein levels are dependent on Max. Max has inhibitory effects in the absence of c‐Myc. Graphical Abstract c‐Myc heterodimerizes with Max to transcriptionally regulate target genes. This study shows that essential biological functions such as proliferation or differentiation can be initiated in the absence of both factors in primary B lymphocytes.</description><identifier>ISSN: 1469-221X</identifier><identifier>EISSN: 1469-3178</identifier><identifier>DOI: 10.15252/embr.201845770</identifier><identifier>PMID: 30126925</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Amino Acid Sequence - genetics ; Animals ; B lymphocytes ; B-Lymphocytes - chemistry ; B-Lymphocytes - metabolism ; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - chemistry ; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - genetics ; Biological activity ; Cell differentiation ; Cell Differentiation - genetics ; c‐Myc ; Deoxyribonucleic acid ; Differentiation (biology) ; Dimerization ; DNA ; DNA biosynthesis ; DNA Replication - genetics ; DNA-Binding Proteins - chemistry ; DNA-Binding Proteins - genetics ; EMBO11 ; EMBO19 ; EMBO37 ; Helix-Loop-Helix Motifs - genetics ; Humans ; Leucine ; Leucine zipper proteins ; Leucine Zippers - genetics ; Lymphocytes ; Lymphocytes B ; Max ; Mice ; Myc protein ; Protein Binding - genetics ; Proteins ; Proto-Oncogene Proteins c-myc - chemistry ; Proto-Oncogene Proteins c-myc - genetics ; Replication ; Scientific Report ; Scientific Reports ; Transcription factors ; Transcriptional Activation - genetics</subject><ispartof>EMBO reports, 2018-10, Vol.19 (10), p.n/a</ispartof><rights>The Author(s) 2018</rights><rights>2018 The Authors</rights><rights>2018 The Authors.</rights><rights>2018 EMBO</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5130-fabddcd329ec41d5fcd0559be8f32c5933fa4e8354d1483b1a4927a6941ec1c63</citedby><cites>FETCH-LOGICAL-c5130-fabddcd329ec41d5fcd0559be8f32c5933fa4e8354d1483b1a4927a6941ec1c63</cites><orcidid>0000-0001-9262-1282</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6172472/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6172472/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30126925$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pérez‐Olivares, Mercedes</creatorcontrib><creatorcontrib>Trento, Alfonsina</creatorcontrib><creatorcontrib>Rodriguez‐Acebes, Sara</creatorcontrib><creatorcontrib>González‐Acosta, Daniel</creatorcontrib><creatorcontrib>Fernández‐Antorán, David</creatorcontrib><creatorcontrib>Román‐García, Sara</creatorcontrib><creatorcontrib>Martinez, Dolores</creatorcontrib><creatorcontrib>López‐Briones, Tania</creatorcontrib><creatorcontrib>Torroja, Carlos</creatorcontrib><creatorcontrib>Carrasco, Yolanda R</creatorcontrib><creatorcontrib>Méndez, Juan</creatorcontrib><creatorcontrib>Moreno de Alborán, Ignacio</creatorcontrib><title>Functional interplay between c‐Myc and Max in B lymphocyte differentiation</title><title>EMBO reports</title><addtitle>EMBO Rep</addtitle><addtitle>EMBO Rep</addtitle><description>The Myc family of oncogenic transcription factors regulates myriad cellular functions. Myc proteins contain a basic region/helix‐loop‐helix/leucine zipper domain that mediates DNA binding and heterodimerization with its partner Max. Among the Myc proteins, c‐Myc is the most widely expressed and relevant in primary B lymphocytes. There is evidence suggesting that c‐Myc can perform some of its functions in the absence of Max in different cellular contexts. However, the functional in vivo interplay between c‐Myc and Max during B lymphocyte differentiation is not well understood. Using in vivo and ex vivo models, we show that while c‐Myc requires Max in primary B lymphocytes, several key biological processes, such as cell differentiation and DNA replication, can initially progress without the formation of c‐Myc/Max heterodimers. We also describe that B lymphocytes lacking Myc, Max, or both show upregulation of signaling pathways associated with the B‐cell receptor. These data suggest that c‐Myc/Max heterodimers are not essential for the initiation of a subset of important biological processes in B lymphocytes, but are required for fine‐tuning the initial response after activation. Synopsis c‐Myc heterodimerizes with Max to transcriptionally regulate target genes. This study shows that essential biological functions such as proliferation or differentiation can be initiated in the absence of both factors in primary B lymphocytes. B cell progenitors can differentiate in the absence of Myc and Max. DNA replication is impaired in c‐Myc‐deficient B lymphocytes. c‐Myc protein levels are dependent on Max. Max has inhibitory effects in the absence of c‐Myc. Graphical Abstract c‐Myc heterodimerizes with Max to transcriptionally regulate target genes. This study shows that essential biological functions such as proliferation or differentiation can be initiated in the absence of both factors in primary B lymphocytes.</description><subject>Amino Acid Sequence - genetics</subject><subject>Animals</subject><subject>B lymphocytes</subject><subject>B-Lymphocytes - chemistry</subject><subject>B-Lymphocytes - metabolism</subject><subject>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - chemistry</subject><subject>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - genetics</subject><subject>Biological activity</subject><subject>Cell differentiation</subject><subject>Cell Differentiation - genetics</subject><subject>c‐Myc</subject><subject>Deoxyribonucleic acid</subject><subject>Differentiation (biology)</subject><subject>Dimerization</subject><subject>DNA</subject><subject>DNA biosynthesis</subject><subject>DNA Replication - genetics</subject><subject>DNA-Binding Proteins - chemistry</subject><subject>DNA-Binding Proteins - genetics</subject><subject>EMBO11</subject><subject>EMBO19</subject><subject>EMBO37</subject><subject>Helix-Loop-Helix Motifs - genetics</subject><subject>Humans</subject><subject>Leucine</subject><subject>Leucine zipper proteins</subject><subject>Leucine Zippers - genetics</subject><subject>Lymphocytes</subject><subject>Lymphocytes B</subject><subject>Max</subject><subject>Mice</subject><subject>Myc protein</subject><subject>Protein Binding - genetics</subject><subject>Proteins</subject><subject>Proto-Oncogene Proteins c-myc - chemistry</subject><subject>Proto-Oncogene Proteins c-myc - genetics</subject><subject>Replication</subject><subject>Scientific Report</subject><subject>Scientific Reports</subject><subject>Transcription factors</subject><subject>Transcriptional Activation - genetics</subject><issn>1469-221X</issn><issn>1469-3178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkU9rFDEYh4MotlbP3mTAi5dt8-bPzMSDYEurwi6CKHgLmeSdNmUmsyYz1rn5EfyMfhKz7rpWQTwlkOd9-L35EfIY6DFIJtkJ9k08ZhRqIauK3iGHIEq14FDVd3d3xuDjAXmQ0jWlVKqqvk8OOAVWKiYPyfJiCnb0QzBd4cOIcd2ZuWhwvEEMhf3-9dtqtoUJrliZL5koTotu7tdXg51HLJxvW4wYRm82jofkXmu6hI925xH5cHH-_uz1Yvn21Zuzl8uFlcDpojWNc9ZxptAKcLK1jkqpGqxbzqxUnLdGYM2lcCBq3oARilWmVALQgi35EXmx9a6npkdnc4BoOr2Ovjdx1oPx-s-X4K_05fBZl1AxUbEseLYTxOHThGnUvU8Wu84EHKakGVXAuKwYzejTv9DrYYr5uzIFUHJWK7FJdLKlbBxSitjuwwDVP5vSm6b0vqk88eT2Dnv-VzUZeL4FbnyH8_98-nx1-u62nW6HU54Llxh_p_5XoB9-frID</recordid><startdate>201810</startdate><enddate>201810</enddate><creator>Pérez‐Olivares, Mercedes</creator><creator>Trento, Alfonsina</creator><creator>Rodriguez‐Acebes, Sara</creator><creator>González‐Acosta, Daniel</creator><creator>Fernández‐Antorán, David</creator><creator>Román‐García, Sara</creator><creator>Martinez, Dolores</creator><creator>López‐Briones, Tania</creator><creator>Torroja, Carlos</creator><creator>Carrasco, Yolanda R</creator><creator>Méndez, Juan</creator><creator>Moreno de Alborán, Ignacio</creator><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><general>John Wiley and Sons Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9262-1282</orcidid></search><sort><creationdate>201810</creationdate><title>Functional interplay between c‐Myc and Max in B lymphocyte differentiation</title><author>Pérez‐Olivares, Mercedes ; Trento, Alfonsina ; Rodriguez‐Acebes, Sara ; González‐Acosta, Daniel ; Fernández‐Antorán, David ; Román‐García, Sara ; Martinez, Dolores ; López‐Briones, Tania ; Torroja, Carlos ; Carrasco, Yolanda R ; Méndez, Juan ; Moreno de Alborán, Ignacio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5130-fabddcd329ec41d5fcd0559be8f32c5933fa4e8354d1483b1a4927a6941ec1c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Amino Acid Sequence - genetics</topic><topic>Animals</topic><topic>B lymphocytes</topic><topic>B-Lymphocytes - chemistry</topic><topic>B-Lymphocytes - metabolism</topic><topic>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - chemistry</topic><topic>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - genetics</topic><topic>Biological activity</topic><topic>Cell differentiation</topic><topic>Cell Differentiation - genetics</topic><topic>c‐Myc</topic><topic>Deoxyribonucleic acid</topic><topic>Differentiation (biology)</topic><topic>Dimerization</topic><topic>DNA</topic><topic>DNA biosynthesis</topic><topic>DNA Replication - genetics</topic><topic>DNA-Binding Proteins - chemistry</topic><topic>DNA-Binding Proteins - genetics</topic><topic>EMBO11</topic><topic>EMBO19</topic><topic>EMBO37</topic><topic>Helix-Loop-Helix Motifs - genetics</topic><topic>Humans</topic><topic>Leucine</topic><topic>Leucine zipper proteins</topic><topic>Leucine Zippers - genetics</topic><topic>Lymphocytes</topic><topic>Lymphocytes B</topic><topic>Max</topic><topic>Mice</topic><topic>Myc protein</topic><topic>Protein Binding - genetics</topic><topic>Proteins</topic><topic>Proto-Oncogene Proteins c-myc - chemistry</topic><topic>Proto-Oncogene Proteins c-myc - genetics</topic><topic>Replication</topic><topic>Scientific Report</topic><topic>Scientific Reports</topic><topic>Transcription factors</topic><topic>Transcriptional Activation - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pérez‐Olivares, Mercedes</creatorcontrib><creatorcontrib>Trento, Alfonsina</creatorcontrib><creatorcontrib>Rodriguez‐Acebes, Sara</creatorcontrib><creatorcontrib>González‐Acosta, Daniel</creatorcontrib><creatorcontrib>Fernández‐Antorán, David</creatorcontrib><creatorcontrib>Román‐García, Sara</creatorcontrib><creatorcontrib>Martinez, Dolores</creatorcontrib><creatorcontrib>López‐Briones, Tania</creatorcontrib><creatorcontrib>Torroja, Carlos</creatorcontrib><creatorcontrib>Carrasco, Yolanda R</creatorcontrib><creatorcontrib>Méndez, Juan</creatorcontrib><creatorcontrib>Moreno de Alborán, Ignacio</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>EMBO reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pérez‐Olivares, Mercedes</au><au>Trento, Alfonsina</au><au>Rodriguez‐Acebes, Sara</au><au>González‐Acosta, Daniel</au><au>Fernández‐Antorán, David</au><au>Román‐García, Sara</au><au>Martinez, Dolores</au><au>López‐Briones, Tania</au><au>Torroja, Carlos</au><au>Carrasco, Yolanda R</au><au>Méndez, Juan</au><au>Moreno de Alborán, Ignacio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional interplay between c‐Myc and Max in B lymphocyte differentiation</atitle><jtitle>EMBO reports</jtitle><stitle>EMBO Rep</stitle><addtitle>EMBO Rep</addtitle><date>2018-10</date><risdate>2018</risdate><volume>19</volume><issue>10</issue><epage>n/a</epage><issn>1469-221X</issn><eissn>1469-3178</eissn><abstract>The Myc family of oncogenic transcription factors regulates myriad cellular functions. Myc proteins contain a basic region/helix‐loop‐helix/leucine zipper domain that mediates DNA binding and heterodimerization with its partner Max. Among the Myc proteins, c‐Myc is the most widely expressed and relevant in primary B lymphocytes. There is evidence suggesting that c‐Myc can perform some of its functions in the absence of Max in different cellular contexts. However, the functional in vivo interplay between c‐Myc and Max during B lymphocyte differentiation is not well understood. Using in vivo and ex vivo models, we show that while c‐Myc requires Max in primary B lymphocytes, several key biological processes, such as cell differentiation and DNA replication, can initially progress without the formation of c‐Myc/Max heterodimers. We also describe that B lymphocytes lacking Myc, Max, or both show upregulation of signaling pathways associated with the B‐cell receptor. These data suggest that c‐Myc/Max heterodimers are not essential for the initiation of a subset of important biological processes in B lymphocytes, but are required for fine‐tuning the initial response after activation. Synopsis c‐Myc heterodimerizes with Max to transcriptionally regulate target genes. This study shows that essential biological functions such as proliferation or differentiation can be initiated in the absence of both factors in primary B lymphocytes. B cell progenitors can differentiate in the absence of Myc and Max. DNA replication is impaired in c‐Myc‐deficient B lymphocytes. c‐Myc protein levels are dependent on Max. Max has inhibitory effects in the absence of c‐Myc. Graphical Abstract c‐Myc heterodimerizes with Max to transcriptionally regulate target genes. This study shows that essential biological functions such as proliferation or differentiation can be initiated in the absence of both factors in primary B lymphocytes.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30126925</pmid><doi>10.15252/embr.201845770</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9262-1282</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1469-221X
ispartof EMBO reports, 2018-10, Vol.19 (10), p.n/a
issn 1469-221X
1469-3178
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6172472
source PubMed Central
subjects Amino Acid Sequence - genetics
Animals
B lymphocytes
B-Lymphocytes - chemistry
B-Lymphocytes - metabolism
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - chemistry
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - genetics
Biological activity
Cell differentiation
Cell Differentiation - genetics
c‐Myc
Deoxyribonucleic acid
Differentiation (biology)
Dimerization
DNA
DNA biosynthesis
DNA Replication - genetics
DNA-Binding Proteins - chemistry
DNA-Binding Proteins - genetics
EMBO11
EMBO19
EMBO37
Helix-Loop-Helix Motifs - genetics
Humans
Leucine
Leucine zipper proteins
Leucine Zippers - genetics
Lymphocytes
Lymphocytes B
Max
Mice
Myc protein
Protein Binding - genetics
Proteins
Proto-Oncogene Proteins c-myc - chemistry
Proto-Oncogene Proteins c-myc - genetics
Replication
Scientific Report
Scientific Reports
Transcription factors
Transcriptional Activation - genetics
title Functional interplay between c‐Myc and Max in B lymphocyte differentiation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A26%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20interplay%20between%20c%E2%80%90Myc%20and%20Max%20in%20B%20lymphocyte%20differentiation&rft.jtitle=EMBO%20reports&rft.au=P%C3%A9rez%E2%80%90Olivares,%20Mercedes&rft.date=2018-10&rft.volume=19&rft.issue=10&rft.epage=n/a&rft.issn=1469-221X&rft.eissn=1469-3178&rft_id=info:doi/10.15252/embr.201845770&rft_dat=%3Cproquest_pubme%3E2091235720%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5130-fabddcd329ec41d5fcd0559be8f32c5933fa4e8354d1483b1a4927a6941ec1c63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2116328946&rft_id=info:pmid/30126925&rfr_iscdi=true