Loading…
GIRK currents in VTA dopamine neurons control the sensitivity of mice to cocaine-induced locomotor sensitization
GABABR-dependent activation of G protein-gated inwardly rectifying potassium channels (GIRK or KIR3) provides a well-known source of inhibition in the brain, but the details on how this important inhibitory pathway affects neural circuits are lacking. We used sorting nexin 27 (SNX27), an endosomal a...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2018-10, Vol.115 (40), p.E9479-E9488 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c509t-64767d30f41cd0715488bd082f84e7a06171cf7369c83c17599779aee353846e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c509t-64767d30f41cd0715488bd082f84e7a06171cf7369c83c17599779aee353846e3 |
container_end_page | E9488 |
container_issue | 40 |
container_start_page | E9479 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 115 |
creator | Rifkin, Robert A. Huyghe, Deborah Li, Xiaofan Parakala, Manasa Aisenberg, Erin Moss, Stephen J. Slesinger, Paul A. |
description | GABABR-dependent activation of G protein-gated inwardly rectifying potassium channels (GIRK or KIR3) provides a well-known source of inhibition in the brain, but the details on how this important inhibitory pathway affects neural circuits are lacking. We used sorting nexin 27 (SNX27), an endosomal adaptor protein that associates with GIRK2c and GIRK3 subunits, to probe the role of GIRK channels in reward circuits. A conditional knockout of SNX27 in both substantia nigra pars compacta and ventral tegmental area (VTA) dopamine neurons leads to markedly smaller GABABR- and dopamine D₂R-activated GIRK currents, as well as to suprasensitivity to cocaine-induced locomotor sensitization. Expression of the SNX27-insensitive GIRK2a subunit in SNX27-deficient VTA dopamine neurons restored GIRK currents and GABABR-dependent inhibition of spike firing, while also resetting the mouse’s sensitivity to cocaine-dependent sensitization. These results establish a link between slow inhibition mediated by GIRK channels in VTA dopamine neurons and cocaine addiction, revealing a therapeutic target for treating addiction. |
doi_str_mv | 10.1073/pnas.1807788115 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6176583</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26531431</jstor_id><sourcerecordid>26531431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-64767d30f41cd0715488bd082f84e7a06171cf7369c83c17599779aee353846e3</originalsourceid><addsrcrecordid>eNpVkc1LHTEUxUOp1Kd27aol0PXovZOZSbIpiPiFgiDabYiZjObxJpkmGcH-9UaevurqLu7vnPtxCNlHOEDg7HDyOh2gAM6FQGy_kAWCxKprJHwlC4CaV6Kpm22yk9ISAGQr4BvZZlDXAmtckOns4uaSmjlG63OiztM_t0e0D5MenbfU2zkGn6gJPsewovnR0mR9ctk9ufxMw0BHZyzNoSBGF0nlfD8b29NVMGEMOcR3wT-dXfB7ZGvQq2S_v9Vdcnd6cnt8Xl1dn10cH11VpgWZywW84z2DoUHTA8e2EeK-B1EPorFcQ4cczcBZJ41gBnkrJedSW8taJprOsl3ye-07zfej7U05L-qVmqIbdXxWQTv1uePdo3oIT6o4d61gxeDXm0EMf2ebslqGOfqys6oRBZccuSzU4ZoyMaQU7bCZgKBeI1KvEan_ERXFz4-Lbfj3TArwYw0sU_nepl93LcOGIXsBQBWYXA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2118797179</pqid></control><display><type>article</type><title>GIRK currents in VTA dopamine neurons control the sensitivity of mice to cocaine-induced locomotor sensitization</title><source>PubMed Central (Open Access)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Rifkin, Robert A. ; Huyghe, Deborah ; Li, Xiaofan ; Parakala, Manasa ; Aisenberg, Erin ; Moss, Stephen J. ; Slesinger, Paul A.</creator><creatorcontrib>Rifkin, Robert A. ; Huyghe, Deborah ; Li, Xiaofan ; Parakala, Manasa ; Aisenberg, Erin ; Moss, Stephen J. ; Slesinger, Paul A.</creatorcontrib><description>GABABR-dependent activation of G protein-gated inwardly rectifying potassium channels (GIRK or KIR3) provides a well-known source of inhibition in the brain, but the details on how this important inhibitory pathway affects neural circuits are lacking. We used sorting nexin 27 (SNX27), an endosomal adaptor protein that associates with GIRK2c and GIRK3 subunits, to probe the role of GIRK channels in reward circuits. A conditional knockout of SNX27 in both substantia nigra pars compacta and ventral tegmental area (VTA) dopamine neurons leads to markedly smaller GABABR- and dopamine D₂R-activated GIRK currents, as well as to suprasensitivity to cocaine-induced locomotor sensitization. Expression of the SNX27-insensitive GIRK2a subunit in SNX27-deficient VTA dopamine neurons restored GIRK currents and GABABR-dependent inhibition of spike firing, while also resetting the mouse’s sensitivity to cocaine-dependent sensitization. These results establish a link between slow inhibition mediated by GIRK channels in VTA dopamine neurons and cocaine addiction, revealing a therapeutic target for treating addiction.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1807788115</identifier><identifier>PMID: 30228121</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Addictions ; Animals ; Behavior disorders ; Biological Sciences ; Brain ; Channels ; Circuits ; Cocaine ; Cocaine - toxicity ; Cocaine-Related Disorders - genetics ; Cocaine-Related Disorders - metabolism ; Cocaine-Related Disorders - pathology ; Dopamine ; Dopamine D2 receptors ; Dopaminergic Neurons - metabolism ; Dopaminergic Neurons - pathology ; Drug abuse ; G Protein-Coupled Inwardly-Rectifying Potassium Channels - genetics ; G Protein-Coupled Inwardly-Rectifying Potassium Channels - metabolism ; Inhibition ; Locomotion - drug effects ; Mice ; Mice, Knockout ; Narcotics ; Neural networks ; Neurons ; Nexin ; PNAS Plus ; Potassium ; Potassium channels ; Potassium channels (inwardly-rectifying) ; Proteins ; Receptors, Dopamine D2 - genetics ; Receptors, Dopamine D2 - metabolism ; Reinforcement ; Sensitivity ; Sorting Nexins - genetics ; Sorting Nexins - metabolism ; Substantia nigra ; Therapeutic applications ; Ventral tegmentum ; γ-Aminobutyric acid B receptors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2018-10, Vol.115 (40), p.E9479-E9488</ispartof><rights>Volumes 1–89 and 106–115, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Oct 2, 2018</rights><rights>2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-64767d30f41cd0715488bd082f84e7a06171cf7369c83c17599779aee353846e3</citedby><cites>FETCH-LOGICAL-c509t-64767d30f41cd0715488bd082f84e7a06171cf7369c83c17599779aee353846e3</cites><orcidid>0000-0002-3868-7528</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26531431$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26531431$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30228121$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rifkin, Robert A.</creatorcontrib><creatorcontrib>Huyghe, Deborah</creatorcontrib><creatorcontrib>Li, Xiaofan</creatorcontrib><creatorcontrib>Parakala, Manasa</creatorcontrib><creatorcontrib>Aisenberg, Erin</creatorcontrib><creatorcontrib>Moss, Stephen J.</creatorcontrib><creatorcontrib>Slesinger, Paul A.</creatorcontrib><title>GIRK currents in VTA dopamine neurons control the sensitivity of mice to cocaine-induced locomotor sensitization</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>GABABR-dependent activation of G protein-gated inwardly rectifying potassium channels (GIRK or KIR3) provides a well-known source of inhibition in the brain, but the details on how this important inhibitory pathway affects neural circuits are lacking. We used sorting nexin 27 (SNX27), an endosomal adaptor protein that associates with GIRK2c and GIRK3 subunits, to probe the role of GIRK channels in reward circuits. A conditional knockout of SNX27 in both substantia nigra pars compacta and ventral tegmental area (VTA) dopamine neurons leads to markedly smaller GABABR- and dopamine D₂R-activated GIRK currents, as well as to suprasensitivity to cocaine-induced locomotor sensitization. Expression of the SNX27-insensitive GIRK2a subunit in SNX27-deficient VTA dopamine neurons restored GIRK currents and GABABR-dependent inhibition of spike firing, while also resetting the mouse’s sensitivity to cocaine-dependent sensitization. These results establish a link between slow inhibition mediated by GIRK channels in VTA dopamine neurons and cocaine addiction, revealing a therapeutic target for treating addiction.</description><subject>Addictions</subject><subject>Animals</subject><subject>Behavior disorders</subject><subject>Biological Sciences</subject><subject>Brain</subject><subject>Channels</subject><subject>Circuits</subject><subject>Cocaine</subject><subject>Cocaine - toxicity</subject><subject>Cocaine-Related Disorders - genetics</subject><subject>Cocaine-Related Disorders - metabolism</subject><subject>Cocaine-Related Disorders - pathology</subject><subject>Dopamine</subject><subject>Dopamine D2 receptors</subject><subject>Dopaminergic Neurons - metabolism</subject><subject>Dopaminergic Neurons - pathology</subject><subject>Drug abuse</subject><subject>G Protein-Coupled Inwardly-Rectifying Potassium Channels - genetics</subject><subject>G Protein-Coupled Inwardly-Rectifying Potassium Channels - metabolism</subject><subject>Inhibition</subject><subject>Locomotion - drug effects</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Narcotics</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Nexin</subject><subject>PNAS Plus</subject><subject>Potassium</subject><subject>Potassium channels</subject><subject>Potassium channels (inwardly-rectifying)</subject><subject>Proteins</subject><subject>Receptors, Dopamine D2 - genetics</subject><subject>Receptors, Dopamine D2 - metabolism</subject><subject>Reinforcement</subject><subject>Sensitivity</subject><subject>Sorting Nexins - genetics</subject><subject>Sorting Nexins - metabolism</subject><subject>Substantia nigra</subject><subject>Therapeutic applications</subject><subject>Ventral tegmentum</subject><subject>γ-Aminobutyric acid B receptors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpVkc1LHTEUxUOp1Kd27aol0PXovZOZSbIpiPiFgiDabYiZjObxJpkmGcH-9UaevurqLu7vnPtxCNlHOEDg7HDyOh2gAM6FQGy_kAWCxKprJHwlC4CaV6Kpm22yk9ISAGQr4BvZZlDXAmtckOns4uaSmjlG63OiztM_t0e0D5MenbfU2zkGn6gJPsewovnR0mR9ctk9ufxMw0BHZyzNoSBGF0nlfD8b29NVMGEMOcR3wT-dXfB7ZGvQq2S_v9Vdcnd6cnt8Xl1dn10cH11VpgWZywW84z2DoUHTA8e2EeK-B1EPorFcQ4cczcBZJ41gBnkrJedSW8taJprOsl3ye-07zfej7U05L-qVmqIbdXxWQTv1uePdo3oIT6o4d61gxeDXm0EMf2ebslqGOfqys6oRBZccuSzU4ZoyMaQU7bCZgKBeI1KvEan_ERXFz4-Lbfj3TArwYw0sU_nepl93LcOGIXsBQBWYXA</recordid><startdate>20181002</startdate><enddate>20181002</enddate><creator>Rifkin, Robert A.</creator><creator>Huyghe, Deborah</creator><creator>Li, Xiaofan</creator><creator>Parakala, Manasa</creator><creator>Aisenberg, Erin</creator><creator>Moss, Stephen J.</creator><creator>Slesinger, Paul A.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3868-7528</orcidid></search><sort><creationdate>20181002</creationdate><title>GIRK currents in VTA dopamine neurons control the sensitivity of mice to cocaine-induced locomotor sensitization</title><author>Rifkin, Robert A. ; Huyghe, Deborah ; Li, Xiaofan ; Parakala, Manasa ; Aisenberg, Erin ; Moss, Stephen J. ; Slesinger, Paul A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-64767d30f41cd0715488bd082f84e7a06171cf7369c83c17599779aee353846e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Addictions</topic><topic>Animals</topic><topic>Behavior disorders</topic><topic>Biological Sciences</topic><topic>Brain</topic><topic>Channels</topic><topic>Circuits</topic><topic>Cocaine</topic><topic>Cocaine - toxicity</topic><topic>Cocaine-Related Disorders - genetics</topic><topic>Cocaine-Related Disorders - metabolism</topic><topic>Cocaine-Related Disorders - pathology</topic><topic>Dopamine</topic><topic>Dopamine D2 receptors</topic><topic>Dopaminergic Neurons - metabolism</topic><topic>Dopaminergic Neurons - pathology</topic><topic>Drug abuse</topic><topic>G Protein-Coupled Inwardly-Rectifying Potassium Channels - genetics</topic><topic>G Protein-Coupled Inwardly-Rectifying Potassium Channels - metabolism</topic><topic>Inhibition</topic><topic>Locomotion - drug effects</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Narcotics</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Nexin</topic><topic>PNAS Plus</topic><topic>Potassium</topic><topic>Potassium channels</topic><topic>Potassium channels (inwardly-rectifying)</topic><topic>Proteins</topic><topic>Receptors, Dopamine D2 - genetics</topic><topic>Receptors, Dopamine D2 - metabolism</topic><topic>Reinforcement</topic><topic>Sensitivity</topic><topic>Sorting Nexins - genetics</topic><topic>Sorting Nexins - metabolism</topic><topic>Substantia nigra</topic><topic>Therapeutic applications</topic><topic>Ventral tegmentum</topic><topic>γ-Aminobutyric acid B receptors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rifkin, Robert A.</creatorcontrib><creatorcontrib>Huyghe, Deborah</creatorcontrib><creatorcontrib>Li, Xiaofan</creatorcontrib><creatorcontrib>Parakala, Manasa</creatorcontrib><creatorcontrib>Aisenberg, Erin</creatorcontrib><creatorcontrib>Moss, Stephen J.</creatorcontrib><creatorcontrib>Slesinger, Paul A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rifkin, Robert A.</au><au>Huyghe, Deborah</au><au>Li, Xiaofan</au><au>Parakala, Manasa</au><au>Aisenberg, Erin</au><au>Moss, Stephen J.</au><au>Slesinger, Paul A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GIRK currents in VTA dopamine neurons control the sensitivity of mice to cocaine-induced locomotor sensitization</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2018-10-02</date><risdate>2018</risdate><volume>115</volume><issue>40</issue><spage>E9479</spage><epage>E9488</epage><pages>E9479-E9488</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>GABABR-dependent activation of G protein-gated inwardly rectifying potassium channels (GIRK or KIR3) provides a well-known source of inhibition in the brain, but the details on how this important inhibitory pathway affects neural circuits are lacking. We used sorting nexin 27 (SNX27), an endosomal adaptor protein that associates with GIRK2c and GIRK3 subunits, to probe the role of GIRK channels in reward circuits. A conditional knockout of SNX27 in both substantia nigra pars compacta and ventral tegmental area (VTA) dopamine neurons leads to markedly smaller GABABR- and dopamine D₂R-activated GIRK currents, as well as to suprasensitivity to cocaine-induced locomotor sensitization. Expression of the SNX27-insensitive GIRK2a subunit in SNX27-deficient VTA dopamine neurons restored GIRK currents and GABABR-dependent inhibition of spike firing, while also resetting the mouse’s sensitivity to cocaine-dependent sensitization. These results establish a link between slow inhibition mediated by GIRK channels in VTA dopamine neurons and cocaine addiction, revealing a therapeutic target for treating addiction.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>30228121</pmid><doi>10.1073/pnas.1807788115</doi><orcidid>https://orcid.org/0000-0002-3868-7528</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2018-10, Vol.115 (40), p.E9479-E9488 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6176583 |
source | PubMed Central (Open Access); JSTOR Archival Journals and Primary Sources Collection |
subjects | Addictions Animals Behavior disorders Biological Sciences Brain Channels Circuits Cocaine Cocaine - toxicity Cocaine-Related Disorders - genetics Cocaine-Related Disorders - metabolism Cocaine-Related Disorders - pathology Dopamine Dopamine D2 receptors Dopaminergic Neurons - metabolism Dopaminergic Neurons - pathology Drug abuse G Protein-Coupled Inwardly-Rectifying Potassium Channels - genetics G Protein-Coupled Inwardly-Rectifying Potassium Channels - metabolism Inhibition Locomotion - drug effects Mice Mice, Knockout Narcotics Neural networks Neurons Nexin PNAS Plus Potassium Potassium channels Potassium channels (inwardly-rectifying) Proteins Receptors, Dopamine D2 - genetics Receptors, Dopamine D2 - metabolism Reinforcement Sensitivity Sorting Nexins - genetics Sorting Nexins - metabolism Substantia nigra Therapeutic applications Ventral tegmentum γ-Aminobutyric acid B receptors |
title | GIRK currents in VTA dopamine neurons control the sensitivity of mice to cocaine-induced locomotor sensitization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A23%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GIRK%20currents%20in%20VTA%20dopamine%20neurons%20control%20the%20sensitivity%20of%20mice%20to%20cocaine-induced%20locomotor%20sensitization&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Rifkin,%20Robert%20A.&rft.date=2018-10-02&rft.volume=115&rft.issue=40&rft.spage=E9479&rft.epage=E9488&rft.pages=E9479-E9488&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1807788115&rft_dat=%3Cjstor_pubme%3E26531431%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c509t-64767d30f41cd0715488bd082f84e7a06171cf7369c83c17599779aee353846e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2118797179&rft_id=info:pmid/30228121&rft_jstor_id=26531431&rfr_iscdi=true |