Loading…

GIRK currents in VTA dopamine neurons control the sensitivity of mice to cocaine-induced locomotor sensitization

GABABR-dependent activation of G protein-gated inwardly rectifying potassium channels (GIRK or KIR3) provides a well-known source of inhibition in the brain, but the details on how this important inhibitory pathway affects neural circuits are lacking. We used sorting nexin 27 (SNX27), an endosomal a...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2018-10, Vol.115 (40), p.E9479-E9488
Main Authors: Rifkin, Robert A., Huyghe, Deborah, Li, Xiaofan, Parakala, Manasa, Aisenberg, Erin, Moss, Stephen J., Slesinger, Paul A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c509t-64767d30f41cd0715488bd082f84e7a06171cf7369c83c17599779aee353846e3
cites cdi_FETCH-LOGICAL-c509t-64767d30f41cd0715488bd082f84e7a06171cf7369c83c17599779aee353846e3
container_end_page E9488
container_issue 40
container_start_page E9479
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 115
creator Rifkin, Robert A.
Huyghe, Deborah
Li, Xiaofan
Parakala, Manasa
Aisenberg, Erin
Moss, Stephen J.
Slesinger, Paul A.
description GABABR-dependent activation of G protein-gated inwardly rectifying potassium channels (GIRK or KIR3) provides a well-known source of inhibition in the brain, but the details on how this important inhibitory pathway affects neural circuits are lacking. We used sorting nexin 27 (SNX27), an endosomal adaptor protein that associates with GIRK2c and GIRK3 subunits, to probe the role of GIRK channels in reward circuits. A conditional knockout of SNX27 in both substantia nigra pars compacta and ventral tegmental area (VTA) dopamine neurons leads to markedly smaller GABABR- and dopamine D₂R-activated GIRK currents, as well as to suprasensitivity to cocaine-induced locomotor sensitization. Expression of the SNX27-insensitive GIRK2a subunit in SNX27-deficient VTA dopamine neurons restored GIRK currents and GABABR-dependent inhibition of spike firing, while also resetting the mouse’s sensitivity to cocaine-dependent sensitization. These results establish a link between slow inhibition mediated by GIRK channels in VTA dopamine neurons and cocaine addiction, revealing a therapeutic target for treating addiction.
doi_str_mv 10.1073/pnas.1807788115
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6176583</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26531431</jstor_id><sourcerecordid>26531431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-64767d30f41cd0715488bd082f84e7a06171cf7369c83c17599779aee353846e3</originalsourceid><addsrcrecordid>eNpVkc1LHTEUxUOp1Kd27aol0PXovZOZSbIpiPiFgiDabYiZjObxJpkmGcH-9UaevurqLu7vnPtxCNlHOEDg7HDyOh2gAM6FQGy_kAWCxKprJHwlC4CaV6Kpm22yk9ISAGQr4BvZZlDXAmtckOns4uaSmjlG63OiztM_t0e0D5MenbfU2zkGn6gJPsewovnR0mR9ctk9ufxMw0BHZyzNoSBGF0nlfD8b29NVMGEMOcR3wT-dXfB7ZGvQq2S_v9Vdcnd6cnt8Xl1dn10cH11VpgWZywW84z2DoUHTA8e2EeK-B1EPorFcQ4cczcBZJ41gBnkrJedSW8taJprOsl3ye-07zfej7U05L-qVmqIbdXxWQTv1uePdo3oIT6o4d61gxeDXm0EMf2ebslqGOfqys6oRBZccuSzU4ZoyMaQU7bCZgKBeI1KvEan_ERXFz4-Lbfj3TArwYw0sU_nepl93LcOGIXsBQBWYXA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2118797179</pqid></control><display><type>article</type><title>GIRK currents in VTA dopamine neurons control the sensitivity of mice to cocaine-induced locomotor sensitization</title><source>PubMed Central (Open Access)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Rifkin, Robert A. ; Huyghe, Deborah ; Li, Xiaofan ; Parakala, Manasa ; Aisenberg, Erin ; Moss, Stephen J. ; Slesinger, Paul A.</creator><creatorcontrib>Rifkin, Robert A. ; Huyghe, Deborah ; Li, Xiaofan ; Parakala, Manasa ; Aisenberg, Erin ; Moss, Stephen J. ; Slesinger, Paul A.</creatorcontrib><description>GABABR-dependent activation of G protein-gated inwardly rectifying potassium channels (GIRK or KIR3) provides a well-known source of inhibition in the brain, but the details on how this important inhibitory pathway affects neural circuits are lacking. We used sorting nexin 27 (SNX27), an endosomal adaptor protein that associates with GIRK2c and GIRK3 subunits, to probe the role of GIRK channels in reward circuits. A conditional knockout of SNX27 in both substantia nigra pars compacta and ventral tegmental area (VTA) dopamine neurons leads to markedly smaller GABABR- and dopamine D₂R-activated GIRK currents, as well as to suprasensitivity to cocaine-induced locomotor sensitization. Expression of the SNX27-insensitive GIRK2a subunit in SNX27-deficient VTA dopamine neurons restored GIRK currents and GABABR-dependent inhibition of spike firing, while also resetting the mouse’s sensitivity to cocaine-dependent sensitization. These results establish a link between slow inhibition mediated by GIRK channels in VTA dopamine neurons and cocaine addiction, revealing a therapeutic target for treating addiction.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1807788115</identifier><identifier>PMID: 30228121</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Addictions ; Animals ; Behavior disorders ; Biological Sciences ; Brain ; Channels ; Circuits ; Cocaine ; Cocaine - toxicity ; Cocaine-Related Disorders - genetics ; Cocaine-Related Disorders - metabolism ; Cocaine-Related Disorders - pathology ; Dopamine ; Dopamine D2 receptors ; Dopaminergic Neurons - metabolism ; Dopaminergic Neurons - pathology ; Drug abuse ; G Protein-Coupled Inwardly-Rectifying Potassium Channels - genetics ; G Protein-Coupled Inwardly-Rectifying Potassium Channels - metabolism ; Inhibition ; Locomotion - drug effects ; Mice ; Mice, Knockout ; Narcotics ; Neural networks ; Neurons ; Nexin ; PNAS Plus ; Potassium ; Potassium channels ; Potassium channels (inwardly-rectifying) ; Proteins ; Receptors, Dopamine D2 - genetics ; Receptors, Dopamine D2 - metabolism ; Reinforcement ; Sensitivity ; Sorting Nexins - genetics ; Sorting Nexins - metabolism ; Substantia nigra ; Therapeutic applications ; Ventral tegmentum ; γ-Aminobutyric acid B receptors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2018-10, Vol.115 (40), p.E9479-E9488</ispartof><rights>Volumes 1–89 and 106–115, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Oct 2, 2018</rights><rights>2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-64767d30f41cd0715488bd082f84e7a06171cf7369c83c17599779aee353846e3</citedby><cites>FETCH-LOGICAL-c509t-64767d30f41cd0715488bd082f84e7a06171cf7369c83c17599779aee353846e3</cites><orcidid>0000-0002-3868-7528</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26531431$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26531431$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30228121$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rifkin, Robert A.</creatorcontrib><creatorcontrib>Huyghe, Deborah</creatorcontrib><creatorcontrib>Li, Xiaofan</creatorcontrib><creatorcontrib>Parakala, Manasa</creatorcontrib><creatorcontrib>Aisenberg, Erin</creatorcontrib><creatorcontrib>Moss, Stephen J.</creatorcontrib><creatorcontrib>Slesinger, Paul A.</creatorcontrib><title>GIRK currents in VTA dopamine neurons control the sensitivity of mice to cocaine-induced locomotor sensitization</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>GABABR-dependent activation of G protein-gated inwardly rectifying potassium channels (GIRK or KIR3) provides a well-known source of inhibition in the brain, but the details on how this important inhibitory pathway affects neural circuits are lacking. We used sorting nexin 27 (SNX27), an endosomal adaptor protein that associates with GIRK2c and GIRK3 subunits, to probe the role of GIRK channels in reward circuits. A conditional knockout of SNX27 in both substantia nigra pars compacta and ventral tegmental area (VTA) dopamine neurons leads to markedly smaller GABABR- and dopamine D₂R-activated GIRK currents, as well as to suprasensitivity to cocaine-induced locomotor sensitization. Expression of the SNX27-insensitive GIRK2a subunit in SNX27-deficient VTA dopamine neurons restored GIRK currents and GABABR-dependent inhibition of spike firing, while also resetting the mouse’s sensitivity to cocaine-dependent sensitization. These results establish a link between slow inhibition mediated by GIRK channels in VTA dopamine neurons and cocaine addiction, revealing a therapeutic target for treating addiction.</description><subject>Addictions</subject><subject>Animals</subject><subject>Behavior disorders</subject><subject>Biological Sciences</subject><subject>Brain</subject><subject>Channels</subject><subject>Circuits</subject><subject>Cocaine</subject><subject>Cocaine - toxicity</subject><subject>Cocaine-Related Disorders - genetics</subject><subject>Cocaine-Related Disorders - metabolism</subject><subject>Cocaine-Related Disorders - pathology</subject><subject>Dopamine</subject><subject>Dopamine D2 receptors</subject><subject>Dopaminergic Neurons - metabolism</subject><subject>Dopaminergic Neurons - pathology</subject><subject>Drug abuse</subject><subject>G Protein-Coupled Inwardly-Rectifying Potassium Channels - genetics</subject><subject>G Protein-Coupled Inwardly-Rectifying Potassium Channels - metabolism</subject><subject>Inhibition</subject><subject>Locomotion - drug effects</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Narcotics</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Nexin</subject><subject>PNAS Plus</subject><subject>Potassium</subject><subject>Potassium channels</subject><subject>Potassium channels (inwardly-rectifying)</subject><subject>Proteins</subject><subject>Receptors, Dopamine D2 - genetics</subject><subject>Receptors, Dopamine D2 - metabolism</subject><subject>Reinforcement</subject><subject>Sensitivity</subject><subject>Sorting Nexins - genetics</subject><subject>Sorting Nexins - metabolism</subject><subject>Substantia nigra</subject><subject>Therapeutic applications</subject><subject>Ventral tegmentum</subject><subject>γ-Aminobutyric acid B receptors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpVkc1LHTEUxUOp1Kd27aol0PXovZOZSbIpiPiFgiDabYiZjObxJpkmGcH-9UaevurqLu7vnPtxCNlHOEDg7HDyOh2gAM6FQGy_kAWCxKprJHwlC4CaV6Kpm22yk9ISAGQr4BvZZlDXAmtckOns4uaSmjlG63OiztM_t0e0D5MenbfU2zkGn6gJPsewovnR0mR9ctk9ufxMw0BHZyzNoSBGF0nlfD8b29NVMGEMOcR3wT-dXfB7ZGvQq2S_v9Vdcnd6cnt8Xl1dn10cH11VpgWZywW84z2DoUHTA8e2EeK-B1EPorFcQ4cczcBZJ41gBnkrJedSW8taJprOsl3ye-07zfej7U05L-qVmqIbdXxWQTv1uePdo3oIT6o4d61gxeDXm0EMf2ebslqGOfqys6oRBZccuSzU4ZoyMaQU7bCZgKBeI1KvEan_ERXFz4-Lbfj3TArwYw0sU_nepl93LcOGIXsBQBWYXA</recordid><startdate>20181002</startdate><enddate>20181002</enddate><creator>Rifkin, Robert A.</creator><creator>Huyghe, Deborah</creator><creator>Li, Xiaofan</creator><creator>Parakala, Manasa</creator><creator>Aisenberg, Erin</creator><creator>Moss, Stephen J.</creator><creator>Slesinger, Paul A.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3868-7528</orcidid></search><sort><creationdate>20181002</creationdate><title>GIRK currents in VTA dopamine neurons control the sensitivity of mice to cocaine-induced locomotor sensitization</title><author>Rifkin, Robert A. ; Huyghe, Deborah ; Li, Xiaofan ; Parakala, Manasa ; Aisenberg, Erin ; Moss, Stephen J. ; Slesinger, Paul A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-64767d30f41cd0715488bd082f84e7a06171cf7369c83c17599779aee353846e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Addictions</topic><topic>Animals</topic><topic>Behavior disorders</topic><topic>Biological Sciences</topic><topic>Brain</topic><topic>Channels</topic><topic>Circuits</topic><topic>Cocaine</topic><topic>Cocaine - toxicity</topic><topic>Cocaine-Related Disorders - genetics</topic><topic>Cocaine-Related Disorders - metabolism</topic><topic>Cocaine-Related Disorders - pathology</topic><topic>Dopamine</topic><topic>Dopamine D2 receptors</topic><topic>Dopaminergic Neurons - metabolism</topic><topic>Dopaminergic Neurons - pathology</topic><topic>Drug abuse</topic><topic>G Protein-Coupled Inwardly-Rectifying Potassium Channels - genetics</topic><topic>G Protein-Coupled Inwardly-Rectifying Potassium Channels - metabolism</topic><topic>Inhibition</topic><topic>Locomotion - drug effects</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Narcotics</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Nexin</topic><topic>PNAS Plus</topic><topic>Potassium</topic><topic>Potassium channels</topic><topic>Potassium channels (inwardly-rectifying)</topic><topic>Proteins</topic><topic>Receptors, Dopamine D2 - genetics</topic><topic>Receptors, Dopamine D2 - metabolism</topic><topic>Reinforcement</topic><topic>Sensitivity</topic><topic>Sorting Nexins - genetics</topic><topic>Sorting Nexins - metabolism</topic><topic>Substantia nigra</topic><topic>Therapeutic applications</topic><topic>Ventral tegmentum</topic><topic>γ-Aminobutyric acid B receptors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rifkin, Robert A.</creatorcontrib><creatorcontrib>Huyghe, Deborah</creatorcontrib><creatorcontrib>Li, Xiaofan</creatorcontrib><creatorcontrib>Parakala, Manasa</creatorcontrib><creatorcontrib>Aisenberg, Erin</creatorcontrib><creatorcontrib>Moss, Stephen J.</creatorcontrib><creatorcontrib>Slesinger, Paul A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rifkin, Robert A.</au><au>Huyghe, Deborah</au><au>Li, Xiaofan</au><au>Parakala, Manasa</au><au>Aisenberg, Erin</au><au>Moss, Stephen J.</au><au>Slesinger, Paul A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GIRK currents in VTA dopamine neurons control the sensitivity of mice to cocaine-induced locomotor sensitization</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2018-10-02</date><risdate>2018</risdate><volume>115</volume><issue>40</issue><spage>E9479</spage><epage>E9488</epage><pages>E9479-E9488</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>GABABR-dependent activation of G protein-gated inwardly rectifying potassium channels (GIRK or KIR3) provides a well-known source of inhibition in the brain, but the details on how this important inhibitory pathway affects neural circuits are lacking. We used sorting nexin 27 (SNX27), an endosomal adaptor protein that associates with GIRK2c and GIRK3 subunits, to probe the role of GIRK channels in reward circuits. A conditional knockout of SNX27 in both substantia nigra pars compacta and ventral tegmental area (VTA) dopamine neurons leads to markedly smaller GABABR- and dopamine D₂R-activated GIRK currents, as well as to suprasensitivity to cocaine-induced locomotor sensitization. Expression of the SNX27-insensitive GIRK2a subunit in SNX27-deficient VTA dopamine neurons restored GIRK currents and GABABR-dependent inhibition of spike firing, while also resetting the mouse’s sensitivity to cocaine-dependent sensitization. These results establish a link between slow inhibition mediated by GIRK channels in VTA dopamine neurons and cocaine addiction, revealing a therapeutic target for treating addiction.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>30228121</pmid><doi>10.1073/pnas.1807788115</doi><orcidid>https://orcid.org/0000-0002-3868-7528</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2018-10, Vol.115 (40), p.E9479-E9488
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6176583
source PubMed Central (Open Access); JSTOR Archival Journals and Primary Sources Collection
subjects Addictions
Animals
Behavior disorders
Biological Sciences
Brain
Channels
Circuits
Cocaine
Cocaine - toxicity
Cocaine-Related Disorders - genetics
Cocaine-Related Disorders - metabolism
Cocaine-Related Disorders - pathology
Dopamine
Dopamine D2 receptors
Dopaminergic Neurons - metabolism
Dopaminergic Neurons - pathology
Drug abuse
G Protein-Coupled Inwardly-Rectifying Potassium Channels - genetics
G Protein-Coupled Inwardly-Rectifying Potassium Channels - metabolism
Inhibition
Locomotion - drug effects
Mice
Mice, Knockout
Narcotics
Neural networks
Neurons
Nexin
PNAS Plus
Potassium
Potassium channels
Potassium channels (inwardly-rectifying)
Proteins
Receptors, Dopamine D2 - genetics
Receptors, Dopamine D2 - metabolism
Reinforcement
Sensitivity
Sorting Nexins - genetics
Sorting Nexins - metabolism
Substantia nigra
Therapeutic applications
Ventral tegmentum
γ-Aminobutyric acid B receptors
title GIRK currents in VTA dopamine neurons control the sensitivity of mice to cocaine-induced locomotor sensitization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A23%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GIRK%20currents%20in%20VTA%20dopamine%20neurons%20control%20the%20sensitivity%20of%20mice%20to%20cocaine-induced%20locomotor%20sensitization&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Rifkin,%20Robert%20A.&rft.date=2018-10-02&rft.volume=115&rft.issue=40&rft.spage=E9479&rft.epage=E9488&rft.pages=E9479-E9488&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1807788115&rft_dat=%3Cjstor_pubme%3E26531431%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c509t-64767d30f41cd0715488bd082f84e7a06171cf7369c83c17599779aee353846e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2118797179&rft_id=info:pmid/30228121&rft_jstor_id=26531431&rfr_iscdi=true