Loading…

HGF-induced formation of the MET–AXL–ELMO2–DOCK180 complex promotes RAC1 activation, receptor clustering, and cancer cell migration and invasion

The MET proto-oncogene–encoded receptor tyrosine kinase (MET) and AXL receptor tyrosine kinase (AXL) are independently operating receptor tyrosine kinases (RTKs) that are functionally associated with aggressive and invasive cancer cell growth. However, how MET and AXL regulate the migratory properti...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2018-10, Vol.293 (40), p.15397-15418
Main Authors: Li, Wenjing, Xiong, Xiahui, Abdalla, Amro, Alejo, Salvador, Zhu, Linyu, Lu, Fei, Sun, Hong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c447t-f9d15c621b6d7f62983a63012316faf3c83af639d2fa4fbe0adfe4207bcfc9f83
cites cdi_FETCH-LOGICAL-c447t-f9d15c621b6d7f62983a63012316faf3c83af639d2fa4fbe0adfe4207bcfc9f83
container_end_page 15418
container_issue 40
container_start_page 15397
container_title The Journal of biological chemistry
container_volume 293
creator Li, Wenjing
Xiong, Xiahui
Abdalla, Amro
Alejo, Salvador
Zhu, Linyu
Lu, Fei
Sun, Hong
description The MET proto-oncogene–encoded receptor tyrosine kinase (MET) and AXL receptor tyrosine kinase (AXL) are independently operating receptor tyrosine kinases (RTKs) that are functionally associated with aggressive and invasive cancer cell growth. However, how MET and AXL regulate the migratory properties of cancer cells remains largely unclear. We report here that the addition of hepatocyte growth factor (HGF), the natural ligand of MET, to serum-starved human glioblastoma cells induces the rapid activation of both MET and AXL and formation of highly polarized MET–AXL clusters on the plasma membrane. HGF also promoted the formation of the MET and AXL protein complexes and phosphorylation of AXL, independent of AXL's ligand, growth arrest–specific 6 (GAS6). The HGF-induced MET–AXL complex stimulated rapid and dynamic cytoskeleton reorganization by activating the small GTPase RAC1, a process requiring both MET and AXL kinase activities. We further found that HGF also promotes the recruitment of ELMO2 and DOCK180, a bipartite guanine nucleotide exchange factor for RAC1, to the MET–AXL complex and thereby stimulates the RAC1-dependent cytoskeleton reorganization. We also demonstrated that the MET–AXL–ELMO2–DOCK180 complex is critical for HGF-induced cell migration and invasion in glioblastoma or other cancer cells. Our findings uncover a critical HGF-dependent signaling pathway that involves the assembly of a large protein complex consisting of MET, AXL, ELMO2, and DOCK180 on the plasma membrane, leading to RAC1-dependent cell migration and invasion in various cancer cells.
doi_str_mv 10.1074/jbc.RA118.003063
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6177597</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820352443</els_id><sourcerecordid>2088746367</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-f9d15c621b6d7f62983a63012316faf3c83af639d2fa4fbe0adfe4207bcfc9f83</originalsourceid><addsrcrecordid>eNp1UcFu1DAQtRCILoU7J-Qjh2ax48RJOCCtlm2L2Gqlqki9WY493rpK4q3trODGPyDxgXwJ3qZUcMAHj8bz5o3nPYReUzKnpCre3bZqfrmgtJ4TwghnT9CMkpplrKTXT9GMkJxmTV7WR-hFCLcknaKhz9ERIwlGq3KGfp6fnWZ20KMCjY3zvYzWDdgZHG8AX6yufn3_sbhep3u1vtjkKX7cLD_TmmDl-l0HX_HOu95FCPhysaRYqmj39xwn2IOCXXQeq24MEbwdtidYDhorOShIz9B1uLdbP808VOywlyElL9EzI7sArx7iMfpyurpanmfrzdmn5WKdqaKoYmYaTUvFc9pyXRmeNzWTPC2XM8qNNEyl3HDW6NzIwrRApDZQ5KRqlVGNqdkx-jDx7sa2B61giF52YudtL_034aQV_1YGeyO2bi84raqyqRLB2wcC7-5GCFH0NhwWkwO4MYic1HVVcMYPUDJBlXcheDCPYygRBztFslPc2ykmO1PLm7-_99jwx78EeD8BIIm0t-BFUBaSutom9aPQzv6f_Tdy6rQ0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2088746367</pqid></control><display><type>article</type><title>HGF-induced formation of the MET–AXL–ELMO2–DOCK180 complex promotes RAC1 activation, receptor clustering, and cancer cell migration and invasion</title><source>ScienceDirect</source><source>PubMed Central</source><creator>Li, Wenjing ; Xiong, Xiahui ; Abdalla, Amro ; Alejo, Salvador ; Zhu, Linyu ; Lu, Fei ; Sun, Hong</creator><creatorcontrib>Li, Wenjing ; Xiong, Xiahui ; Abdalla, Amro ; Alejo, Salvador ; Zhu, Linyu ; Lu, Fei ; Sun, Hong</creatorcontrib><description>The MET proto-oncogene–encoded receptor tyrosine kinase (MET) and AXL receptor tyrosine kinase (AXL) are independently operating receptor tyrosine kinases (RTKs) that are functionally associated with aggressive and invasive cancer cell growth. However, how MET and AXL regulate the migratory properties of cancer cells remains largely unclear. We report here that the addition of hepatocyte growth factor (HGF), the natural ligand of MET, to serum-starved human glioblastoma cells induces the rapid activation of both MET and AXL and formation of highly polarized MET–AXL clusters on the plasma membrane. HGF also promoted the formation of the MET and AXL protein complexes and phosphorylation of AXL, independent of AXL's ligand, growth arrest–specific 6 (GAS6). The HGF-induced MET–AXL complex stimulated rapid and dynamic cytoskeleton reorganization by activating the small GTPase RAC1, a process requiring both MET and AXL kinase activities. We further found that HGF also promotes the recruitment of ELMO2 and DOCK180, a bipartite guanine nucleotide exchange factor for RAC1, to the MET–AXL complex and thereby stimulates the RAC1-dependent cytoskeleton reorganization. We also demonstrated that the MET–AXL–ELMO2–DOCK180 complex is critical for HGF-induced cell migration and invasion in glioblastoma or other cancer cells. Our findings uncover a critical HGF-dependent signaling pathway that involves the assembly of a large protein complex consisting of MET, AXL, ELMO2, and DOCK180 on the plasma membrane, leading to RAC1-dependent cell migration and invasion in various cancer cells.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.RA118.003063</identifier><identifier>PMID: 30108175</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject><![CDATA[Adaptor Proteins, Signal Transducing - antagonists & inhibitors ; Adaptor Proteins, Signal Transducing - genetics ; Adaptor Proteins, Signal Transducing - metabolism ; Axl Receptor Tyrosine Kinase ; cancer ; cell invasion ; Cell Line, Tumor ; Cell Membrane - chemistry ; Cell Membrane - drug effects ; Cell Membrane - metabolism ; cell migration ; Cell Movement - drug effects ; Cell Proliferation - drug effects ; cell signaling ; Cytoskeletal Proteins - antagonists & inhibitors ; Cytoskeletal Proteins - genetics ; Cytoskeletal Proteins - metabolism ; Epithelial Cells - drug effects ; Epithelial Cells - metabolism ; Epithelial Cells - pathology ; Gene Expression Regulation, Neoplastic ; glioblastoma ; guanine nucleotide exchange factor (GEF) ; Hepatocyte Growth Factor - pharmacology ; Humans ; Neoplasm Invasiveness ; Neuroglia - drug effects ; Neuroglia - metabolism ; Neuroglia - pathology ; Protein Transport - drug effects ; Proto-Oncogene Mas ; Proto-Oncogene Proteins - antagonists & inhibitors ; Proto-Oncogene Proteins - genetics ; Proto-Oncogene Proteins - metabolism ; Proto-Oncogene Proteins c-met - antagonists & inhibitors ; Proto-Oncogene Proteins c-met - genetics ; Proto-Oncogene Proteins c-met - metabolism ; rac GTP-Binding Proteins - antagonists & inhibitors ; rac GTP-Binding Proteins - genetics ; rac GTP-Binding Proteins - metabolism ; rac1 GTP-Binding Protein - agonists ; rac1 GTP-Binding Protein - antagonists & inhibitors ; rac1 GTP-Binding Protein - genetics ; rac1 GTP-Binding Protein - metabolism ; Ras-related C3 botulinum toxin substrate 1 (Rac1) ; Receptor Protein-Tyrosine Kinases - antagonists & inhibitors ; Receptor Protein-Tyrosine Kinases - genetics ; Receptor Protein-Tyrosine Kinases - metabolism ; receptor tyrosine kinase ; RNA, Small Interfering - genetics ; RNA, Small Interfering - metabolism ; Signal Transduction]]></subject><ispartof>The Journal of biological chemistry, 2018-10, Vol.293 (40), p.15397-15418</ispartof><rights>2018 © 2018 Li et al.</rights><rights>2018 Li et al.</rights><rights>2018 Li et al. 2018 Li et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-f9d15c621b6d7f62983a63012316faf3c83af639d2fa4fbe0adfe4207bcfc9f83</citedby><cites>FETCH-LOGICAL-c447t-f9d15c621b6d7f62983a63012316faf3c83af639d2fa4fbe0adfe4207bcfc9f83</cites><orcidid>0000-0001-5086-1157 ; 0000-0003-2100-1451</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6177597/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925820352443$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3535,27903,27904,45759,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30108175$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Wenjing</creatorcontrib><creatorcontrib>Xiong, Xiahui</creatorcontrib><creatorcontrib>Abdalla, Amro</creatorcontrib><creatorcontrib>Alejo, Salvador</creatorcontrib><creatorcontrib>Zhu, Linyu</creatorcontrib><creatorcontrib>Lu, Fei</creatorcontrib><creatorcontrib>Sun, Hong</creatorcontrib><title>HGF-induced formation of the MET–AXL–ELMO2–DOCK180 complex promotes RAC1 activation, receptor clustering, and cancer cell migration and invasion</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The MET proto-oncogene–encoded receptor tyrosine kinase (MET) and AXL receptor tyrosine kinase (AXL) are independently operating receptor tyrosine kinases (RTKs) that are functionally associated with aggressive and invasive cancer cell growth. However, how MET and AXL regulate the migratory properties of cancer cells remains largely unclear. We report here that the addition of hepatocyte growth factor (HGF), the natural ligand of MET, to serum-starved human glioblastoma cells induces the rapid activation of both MET and AXL and formation of highly polarized MET–AXL clusters on the plasma membrane. HGF also promoted the formation of the MET and AXL protein complexes and phosphorylation of AXL, independent of AXL's ligand, growth arrest–specific 6 (GAS6). The HGF-induced MET–AXL complex stimulated rapid and dynamic cytoskeleton reorganization by activating the small GTPase RAC1, a process requiring both MET and AXL kinase activities. We further found that HGF also promotes the recruitment of ELMO2 and DOCK180, a bipartite guanine nucleotide exchange factor for RAC1, to the MET–AXL complex and thereby stimulates the RAC1-dependent cytoskeleton reorganization. We also demonstrated that the MET–AXL–ELMO2–DOCK180 complex is critical for HGF-induced cell migration and invasion in glioblastoma or other cancer cells. Our findings uncover a critical HGF-dependent signaling pathway that involves the assembly of a large protein complex consisting of MET, AXL, ELMO2, and DOCK180 on the plasma membrane, leading to RAC1-dependent cell migration and invasion in various cancer cells.</description><subject>Adaptor Proteins, Signal Transducing - antagonists &amp; inhibitors</subject><subject>Adaptor Proteins, Signal Transducing - genetics</subject><subject>Adaptor Proteins, Signal Transducing - metabolism</subject><subject>Axl Receptor Tyrosine Kinase</subject><subject>cancer</subject><subject>cell invasion</subject><subject>Cell Line, Tumor</subject><subject>Cell Membrane - chemistry</subject><subject>Cell Membrane - drug effects</subject><subject>Cell Membrane - metabolism</subject><subject>cell migration</subject><subject>Cell Movement - drug effects</subject><subject>Cell Proliferation - drug effects</subject><subject>cell signaling</subject><subject>Cytoskeletal Proteins - antagonists &amp; inhibitors</subject><subject>Cytoskeletal Proteins - genetics</subject><subject>Cytoskeletal Proteins - metabolism</subject><subject>Epithelial Cells - drug effects</subject><subject>Epithelial Cells - metabolism</subject><subject>Epithelial Cells - pathology</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>glioblastoma</subject><subject>guanine nucleotide exchange factor (GEF)</subject><subject>Hepatocyte Growth Factor - pharmacology</subject><subject>Humans</subject><subject>Neoplasm Invasiveness</subject><subject>Neuroglia - drug effects</subject><subject>Neuroglia - metabolism</subject><subject>Neuroglia - pathology</subject><subject>Protein Transport - drug effects</subject><subject>Proto-Oncogene Mas</subject><subject>Proto-Oncogene Proteins - antagonists &amp; inhibitors</subject><subject>Proto-Oncogene Proteins - genetics</subject><subject>Proto-Oncogene Proteins - metabolism</subject><subject>Proto-Oncogene Proteins c-met - antagonists &amp; inhibitors</subject><subject>Proto-Oncogene Proteins c-met - genetics</subject><subject>Proto-Oncogene Proteins c-met - metabolism</subject><subject>rac GTP-Binding Proteins - antagonists &amp; inhibitors</subject><subject>rac GTP-Binding Proteins - genetics</subject><subject>rac GTP-Binding Proteins - metabolism</subject><subject>rac1 GTP-Binding Protein - agonists</subject><subject>rac1 GTP-Binding Protein - antagonists &amp; inhibitors</subject><subject>rac1 GTP-Binding Protein - genetics</subject><subject>rac1 GTP-Binding Protein - metabolism</subject><subject>Ras-related C3 botulinum toxin substrate 1 (Rac1)</subject><subject>Receptor Protein-Tyrosine Kinases - antagonists &amp; inhibitors</subject><subject>Receptor Protein-Tyrosine Kinases - genetics</subject><subject>Receptor Protein-Tyrosine Kinases - metabolism</subject><subject>receptor tyrosine kinase</subject><subject>RNA, Small Interfering - genetics</subject><subject>RNA, Small Interfering - metabolism</subject><subject>Signal Transduction</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1UcFu1DAQtRCILoU7J-Qjh2ax48RJOCCtlm2L2Gqlqki9WY493rpK4q3trODGPyDxgXwJ3qZUcMAHj8bz5o3nPYReUzKnpCre3bZqfrmgtJ4TwghnT9CMkpplrKTXT9GMkJxmTV7WR-hFCLcknaKhz9ERIwlGq3KGfp6fnWZ20KMCjY3zvYzWDdgZHG8AX6yufn3_sbhep3u1vtjkKX7cLD_TmmDl-l0HX_HOu95FCPhysaRYqmj39xwn2IOCXXQeq24MEbwdtidYDhorOShIz9B1uLdbP808VOywlyElL9EzI7sArx7iMfpyurpanmfrzdmn5WKdqaKoYmYaTUvFc9pyXRmeNzWTPC2XM8qNNEyl3HDW6NzIwrRApDZQ5KRqlVGNqdkx-jDx7sa2B61giF52YudtL_034aQV_1YGeyO2bi84raqyqRLB2wcC7-5GCFH0NhwWkwO4MYic1HVVcMYPUDJBlXcheDCPYygRBztFslPc2ykmO1PLm7-_99jwx78EeD8BIIm0t-BFUBaSutom9aPQzv6f_Tdy6rQ0</recordid><startdate>20181005</startdate><enddate>20181005</enddate><creator>Li, Wenjing</creator><creator>Xiong, Xiahui</creator><creator>Abdalla, Amro</creator><creator>Alejo, Salvador</creator><creator>Zhu, Linyu</creator><creator>Lu, Fei</creator><creator>Sun, Hong</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5086-1157</orcidid><orcidid>https://orcid.org/0000-0003-2100-1451</orcidid></search><sort><creationdate>20181005</creationdate><title>HGF-induced formation of the MET–AXL–ELMO2–DOCK180 complex promotes RAC1 activation, receptor clustering, and cancer cell migration and invasion</title><author>Li, Wenjing ; Xiong, Xiahui ; Abdalla, Amro ; Alejo, Salvador ; Zhu, Linyu ; Lu, Fei ; Sun, Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-f9d15c621b6d7f62983a63012316faf3c83af639d2fa4fbe0adfe4207bcfc9f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptor Proteins, Signal Transducing - antagonists &amp; inhibitors</topic><topic>Adaptor Proteins, Signal Transducing - genetics</topic><topic>Adaptor Proteins, Signal Transducing - metabolism</topic><topic>Axl Receptor Tyrosine Kinase</topic><topic>cancer</topic><topic>cell invasion</topic><topic>Cell Line, Tumor</topic><topic>Cell Membrane - chemistry</topic><topic>Cell Membrane - drug effects</topic><topic>Cell Membrane - metabolism</topic><topic>cell migration</topic><topic>Cell Movement - drug effects</topic><topic>Cell Proliferation - drug effects</topic><topic>cell signaling</topic><topic>Cytoskeletal Proteins - antagonists &amp; inhibitors</topic><topic>Cytoskeletal Proteins - genetics</topic><topic>Cytoskeletal Proteins - metabolism</topic><topic>Epithelial Cells - drug effects</topic><topic>Epithelial Cells - metabolism</topic><topic>Epithelial Cells - pathology</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>glioblastoma</topic><topic>guanine nucleotide exchange factor (GEF)</topic><topic>Hepatocyte Growth Factor - pharmacology</topic><topic>Humans</topic><topic>Neoplasm Invasiveness</topic><topic>Neuroglia - drug effects</topic><topic>Neuroglia - metabolism</topic><topic>Neuroglia - pathology</topic><topic>Protein Transport - drug effects</topic><topic>Proto-Oncogene Mas</topic><topic>Proto-Oncogene Proteins - antagonists &amp; inhibitors</topic><topic>Proto-Oncogene Proteins - genetics</topic><topic>Proto-Oncogene Proteins - metabolism</topic><topic>Proto-Oncogene Proteins c-met - antagonists &amp; inhibitors</topic><topic>Proto-Oncogene Proteins c-met - genetics</topic><topic>Proto-Oncogene Proteins c-met - metabolism</topic><topic>rac GTP-Binding Proteins - antagonists &amp; inhibitors</topic><topic>rac GTP-Binding Proteins - genetics</topic><topic>rac GTP-Binding Proteins - metabolism</topic><topic>rac1 GTP-Binding Protein - agonists</topic><topic>rac1 GTP-Binding Protein - antagonists &amp; inhibitors</topic><topic>rac1 GTP-Binding Protein - genetics</topic><topic>rac1 GTP-Binding Protein - metabolism</topic><topic>Ras-related C3 botulinum toxin substrate 1 (Rac1)</topic><topic>Receptor Protein-Tyrosine Kinases - antagonists &amp; inhibitors</topic><topic>Receptor Protein-Tyrosine Kinases - genetics</topic><topic>Receptor Protein-Tyrosine Kinases - metabolism</topic><topic>receptor tyrosine kinase</topic><topic>RNA, Small Interfering - genetics</topic><topic>RNA, Small Interfering - metabolism</topic><topic>Signal Transduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Wenjing</creatorcontrib><creatorcontrib>Xiong, Xiahui</creatorcontrib><creatorcontrib>Abdalla, Amro</creatorcontrib><creatorcontrib>Alejo, Salvador</creatorcontrib><creatorcontrib>Zhu, Linyu</creatorcontrib><creatorcontrib>Lu, Fei</creatorcontrib><creatorcontrib>Sun, Hong</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Wenjing</au><au>Xiong, Xiahui</au><au>Abdalla, Amro</au><au>Alejo, Salvador</au><au>Zhu, Linyu</au><au>Lu, Fei</au><au>Sun, Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HGF-induced formation of the MET–AXL–ELMO2–DOCK180 complex promotes RAC1 activation, receptor clustering, and cancer cell migration and invasion</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2018-10-05</date><risdate>2018</risdate><volume>293</volume><issue>40</issue><spage>15397</spage><epage>15418</epage><pages>15397-15418</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The MET proto-oncogene–encoded receptor tyrosine kinase (MET) and AXL receptor tyrosine kinase (AXL) are independently operating receptor tyrosine kinases (RTKs) that are functionally associated with aggressive and invasive cancer cell growth. However, how MET and AXL regulate the migratory properties of cancer cells remains largely unclear. We report here that the addition of hepatocyte growth factor (HGF), the natural ligand of MET, to serum-starved human glioblastoma cells induces the rapid activation of both MET and AXL and formation of highly polarized MET–AXL clusters on the plasma membrane. HGF also promoted the formation of the MET and AXL protein complexes and phosphorylation of AXL, independent of AXL's ligand, growth arrest–specific 6 (GAS6). The HGF-induced MET–AXL complex stimulated rapid and dynamic cytoskeleton reorganization by activating the small GTPase RAC1, a process requiring both MET and AXL kinase activities. We further found that HGF also promotes the recruitment of ELMO2 and DOCK180, a bipartite guanine nucleotide exchange factor for RAC1, to the MET–AXL complex and thereby stimulates the RAC1-dependent cytoskeleton reorganization. We also demonstrated that the MET–AXL–ELMO2–DOCK180 complex is critical for HGF-induced cell migration and invasion in glioblastoma or other cancer cells. Our findings uncover a critical HGF-dependent signaling pathway that involves the assembly of a large protein complex consisting of MET, AXL, ELMO2, and DOCK180 on the plasma membrane, leading to RAC1-dependent cell migration and invasion in various cancer cells.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30108175</pmid><doi>10.1074/jbc.RA118.003063</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-5086-1157</orcidid><orcidid>https://orcid.org/0000-0003-2100-1451</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2018-10, Vol.293 (40), p.15397-15418
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6177597
source ScienceDirect; PubMed Central
subjects Adaptor Proteins, Signal Transducing - antagonists & inhibitors
Adaptor Proteins, Signal Transducing - genetics
Adaptor Proteins, Signal Transducing - metabolism
Axl Receptor Tyrosine Kinase
cancer
cell invasion
Cell Line, Tumor
Cell Membrane - chemistry
Cell Membrane - drug effects
Cell Membrane - metabolism
cell migration
Cell Movement - drug effects
Cell Proliferation - drug effects
cell signaling
Cytoskeletal Proteins - antagonists & inhibitors
Cytoskeletal Proteins - genetics
Cytoskeletal Proteins - metabolism
Epithelial Cells - drug effects
Epithelial Cells - metabolism
Epithelial Cells - pathology
Gene Expression Regulation, Neoplastic
glioblastoma
guanine nucleotide exchange factor (GEF)
Hepatocyte Growth Factor - pharmacology
Humans
Neoplasm Invasiveness
Neuroglia - drug effects
Neuroglia - metabolism
Neuroglia - pathology
Protein Transport - drug effects
Proto-Oncogene Mas
Proto-Oncogene Proteins - antagonists & inhibitors
Proto-Oncogene Proteins - genetics
Proto-Oncogene Proteins - metabolism
Proto-Oncogene Proteins c-met - antagonists & inhibitors
Proto-Oncogene Proteins c-met - genetics
Proto-Oncogene Proteins c-met - metabolism
rac GTP-Binding Proteins - antagonists & inhibitors
rac GTP-Binding Proteins - genetics
rac GTP-Binding Proteins - metabolism
rac1 GTP-Binding Protein - agonists
rac1 GTP-Binding Protein - antagonists & inhibitors
rac1 GTP-Binding Protein - genetics
rac1 GTP-Binding Protein - metabolism
Ras-related C3 botulinum toxin substrate 1 (Rac1)
Receptor Protein-Tyrosine Kinases - antagonists & inhibitors
Receptor Protein-Tyrosine Kinases - genetics
Receptor Protein-Tyrosine Kinases - metabolism
receptor tyrosine kinase
RNA, Small Interfering - genetics
RNA, Small Interfering - metabolism
Signal Transduction
title HGF-induced formation of the MET–AXL–ELMO2–DOCK180 complex promotes RAC1 activation, receptor clustering, and cancer cell migration and invasion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T18%3A28%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HGF-induced%20formation%20of%20the%20MET%E2%80%93AXL%E2%80%93ELMO2%E2%80%93DOCK180%20complex%20promotes%20RAC1%20activation,%20receptor%20clustering,%20and%20cancer%20cell%20migration%20and%20invasion&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Li,%20Wenjing&rft.date=2018-10-05&rft.volume=293&rft.issue=40&rft.spage=15397&rft.epage=15418&rft.pages=15397-15418&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.RA118.003063&rft_dat=%3Cproquest_pubme%3E2088746367%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c447t-f9d15c621b6d7f62983a63012316faf3c83af639d2fa4fbe0adfe4207bcfc9f83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2088746367&rft_id=info:pmid/30108175&rfr_iscdi=true