Loading…

A generalised framework for detailed classification of swimming paths inside the Morris Water Maze

The Morris Water Maze is commonly used in behavioural neuroscience for the study of spatial learning with rodents. Over the years, various methods of analysing rodent data collected during this task have been proposed. These methods span from classical performance measurements to more sophisticated...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2018-10, Vol.8 (1), p.15089-15, Article 15089
Main Authors: Vouros, Avgoustinos, Gehring, Tiago V., Szydlowska, Kinga, Janusz, Artur, Tu, Zehai, Croucher, Mike, Lukasiuk, Katarzyna, Konopka, Witold, Sandi, Carmen, Vasilaki, Eleni
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c474t-f0bbb1bda9bb37db005adacfe81ad350f24bc831fe3fd023e67de93e6c88f1ff3
cites cdi_FETCH-LOGICAL-c474t-f0bbb1bda9bb37db005adacfe81ad350f24bc831fe3fd023e67de93e6c88f1ff3
container_end_page 15
container_issue 1
container_start_page 15089
container_title Scientific reports
container_volume 8
creator Vouros, Avgoustinos
Gehring, Tiago V.
Szydlowska, Kinga
Janusz, Artur
Tu, Zehai
Croucher, Mike
Lukasiuk, Katarzyna
Konopka, Witold
Sandi, Carmen
Vasilaki, Eleni
description The Morris Water Maze is commonly used in behavioural neuroscience for the study of spatial learning with rodents. Over the years, various methods of analysing rodent data collected during this task have been proposed. These methods span from classical performance measurements to more sophisticated categorisation techniques which classify the animal swimming path into behavioural classes known as exploration strategies. Classification techniques provide additional insight into the different types of animal behaviours but still only a limited number of studies utilise them. This is primarily because they depend highly on machine learning knowledge. We have previously demonstrated that the animals implement various strategies and that classifying entire trajectories can lead to the loss of important information. In this work, we have developed a generalised and robust classification methodology to boost classification performance and nullify the need for manual tuning. We have also made available an open-source software based on this methodology.
doi_str_mv 10.1038/s41598-018-33456-1
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6180070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2118312898</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-f0bbb1bda9bb37db005adacfe81ad350f24bc831fe3fd023e67de93e6c88f1ff3</originalsourceid><addsrcrecordid>eNp9kcluFDEQhi0EIlGSF-CALHHh0uClF_cFKYogICXKBcTR8lKecei2B1dPInj6OEzIwgFfyqr66q8q_YS84uwdZ1K9x5Z3o2oYV42Ubdc3_BnZF6ztGiGFeP7ov0eOEC9ZfZ0YWz6-JHuSSdb1iu0Te0xXkKCYKSJ4GoqZ4TqXHzTkQj0sJk417SaDGEN0Zok50RwoXsd5jmlFN2ZZI40Jowe6rIGe51Ii0u9mgULPzW84JC-CmRCO7uIB-fbp49eTz83ZxemXk-OzxrVDuzSBWWu59Wa0Vg7e1nWNNy6A4sbLjgXRWqckDyCDZ0JCP3gYa3BKBR6CPCAfdrqbrZ3BO0hLPUtvSpxN-aWzifppJcW1XuUr3XPF2MCqwNs7gZJ_bgEXPUd0ME0mQd6iFpzX-UKNqqJv_kEv87aket4tNSjRDW1fKbGjXMmIBcL9MpzpWxf1zkVdXdR_XNS8Nr1-fMZ9y1_PKiB3ANZSWkF5mP0f2RuKSaqs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117825746</pqid></control><display><type>article</type><title>A generalised framework for detailed classification of swimming paths inside the Morris Water Maze</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Vouros, Avgoustinos ; Gehring, Tiago V. ; Szydlowska, Kinga ; Janusz, Artur ; Tu, Zehai ; Croucher, Mike ; Lukasiuk, Katarzyna ; Konopka, Witold ; Sandi, Carmen ; Vasilaki, Eleni</creator><creatorcontrib>Vouros, Avgoustinos ; Gehring, Tiago V. ; Szydlowska, Kinga ; Janusz, Artur ; Tu, Zehai ; Croucher, Mike ; Lukasiuk, Katarzyna ; Konopka, Witold ; Sandi, Carmen ; Vasilaki, Eleni</creatorcontrib><description>The Morris Water Maze is commonly used in behavioural neuroscience for the study of spatial learning with rodents. Over the years, various methods of analysing rodent data collected during this task have been proposed. These methods span from classical performance measurements to more sophisticated categorisation techniques which classify the animal swimming path into behavioural classes known as exploration strategies. Classification techniques provide additional insight into the different types of animal behaviours but still only a limited number of studies utilise them. This is primarily because they depend highly on machine learning knowledge. We have previously demonstrated that the animals implement various strategies and that classifying entire trajectories can lead to the loss of important information. In this work, we have developed a generalised and robust classification methodology to boost classification performance and nullify the need for manual tuning. We have also made available an open-source software based on this methodology.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-018-33456-1</identifier><identifier>PMID: 30305680</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/1647/2198/1760 ; 631/378/1595/3922 ; Animal memory ; Classification ; Data processing ; Exploration ; Humanities and Social Sciences ; Learning algorithms ; multidisciplinary ; Nervous system ; Rodents ; Science ; Science (multidisciplinary) ; Spatial discrimination learning ; Swimming ; Swimming behavior</subject><ispartof>Scientific reports, 2018-10, Vol.8 (1), p.15089-15, Article 15089</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-f0bbb1bda9bb37db005adacfe81ad350f24bc831fe3fd023e67de93e6c88f1ff3</citedby><cites>FETCH-LOGICAL-c474t-f0bbb1bda9bb37db005adacfe81ad350f24bc831fe3fd023e67de93e6c88f1ff3</cites><orcidid>0000-0002-3383-6133 ; 0000-0002-1582-0920 ; 0000-0001-7713-8321 ; 0000-0002-4994-2459</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2117825746/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2117825746?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30305680$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vouros, Avgoustinos</creatorcontrib><creatorcontrib>Gehring, Tiago V.</creatorcontrib><creatorcontrib>Szydlowska, Kinga</creatorcontrib><creatorcontrib>Janusz, Artur</creatorcontrib><creatorcontrib>Tu, Zehai</creatorcontrib><creatorcontrib>Croucher, Mike</creatorcontrib><creatorcontrib>Lukasiuk, Katarzyna</creatorcontrib><creatorcontrib>Konopka, Witold</creatorcontrib><creatorcontrib>Sandi, Carmen</creatorcontrib><creatorcontrib>Vasilaki, Eleni</creatorcontrib><title>A generalised framework for detailed classification of swimming paths inside the Morris Water Maze</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The Morris Water Maze is commonly used in behavioural neuroscience for the study of spatial learning with rodents. Over the years, various methods of analysing rodent data collected during this task have been proposed. These methods span from classical performance measurements to more sophisticated categorisation techniques which classify the animal swimming path into behavioural classes known as exploration strategies. Classification techniques provide additional insight into the different types of animal behaviours but still only a limited number of studies utilise them. This is primarily because they depend highly on machine learning knowledge. We have previously demonstrated that the animals implement various strategies and that classifying entire trajectories can lead to the loss of important information. In this work, we have developed a generalised and robust classification methodology to boost classification performance and nullify the need for manual tuning. We have also made available an open-source software based on this methodology.</description><subject>631/1647/2198/1760</subject><subject>631/378/1595/3922</subject><subject>Animal memory</subject><subject>Classification</subject><subject>Data processing</subject><subject>Exploration</subject><subject>Humanities and Social Sciences</subject><subject>Learning algorithms</subject><subject>multidisciplinary</subject><subject>Nervous system</subject><subject>Rodents</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Spatial discrimination learning</subject><subject>Swimming</subject><subject>Swimming behavior</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kcluFDEQhi0EIlGSF-CALHHh0uClF_cFKYogICXKBcTR8lKecei2B1dPInj6OEzIwgFfyqr66q8q_YS84uwdZ1K9x5Z3o2oYV42Ubdc3_BnZF6ztGiGFeP7ov0eOEC9ZfZ0YWz6-JHuSSdb1iu0Te0xXkKCYKSJ4GoqZ4TqXHzTkQj0sJk417SaDGEN0Zok50RwoXsd5jmlFN2ZZI40Jowe6rIGe51Ii0u9mgULPzW84JC-CmRCO7uIB-fbp49eTz83ZxemXk-OzxrVDuzSBWWu59Wa0Vg7e1nWNNy6A4sbLjgXRWqckDyCDZ0JCP3gYa3BKBR6CPCAfdrqbrZ3BO0hLPUtvSpxN-aWzifppJcW1XuUr3XPF2MCqwNs7gZJ_bgEXPUd0ME0mQd6iFpzX-UKNqqJv_kEv87aket4tNSjRDW1fKbGjXMmIBcL9MpzpWxf1zkVdXdR_XNS8Nr1-fMZ9y1_PKiB3ANZSWkF5mP0f2RuKSaqs</recordid><startdate>20181010</startdate><enddate>20181010</enddate><creator>Vouros, Avgoustinos</creator><creator>Gehring, Tiago V.</creator><creator>Szydlowska, Kinga</creator><creator>Janusz, Artur</creator><creator>Tu, Zehai</creator><creator>Croucher, Mike</creator><creator>Lukasiuk, Katarzyna</creator><creator>Konopka, Witold</creator><creator>Sandi, Carmen</creator><creator>Vasilaki, Eleni</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3383-6133</orcidid><orcidid>https://orcid.org/0000-0002-1582-0920</orcidid><orcidid>https://orcid.org/0000-0001-7713-8321</orcidid><orcidid>https://orcid.org/0000-0002-4994-2459</orcidid></search><sort><creationdate>20181010</creationdate><title>A generalised framework for detailed classification of swimming paths inside the Morris Water Maze</title><author>Vouros, Avgoustinos ; Gehring, Tiago V. ; Szydlowska, Kinga ; Janusz, Artur ; Tu, Zehai ; Croucher, Mike ; Lukasiuk, Katarzyna ; Konopka, Witold ; Sandi, Carmen ; Vasilaki, Eleni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-f0bbb1bda9bb37db005adacfe81ad350f24bc831fe3fd023e67de93e6c88f1ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>631/1647/2198/1760</topic><topic>631/378/1595/3922</topic><topic>Animal memory</topic><topic>Classification</topic><topic>Data processing</topic><topic>Exploration</topic><topic>Humanities and Social Sciences</topic><topic>Learning algorithms</topic><topic>multidisciplinary</topic><topic>Nervous system</topic><topic>Rodents</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Spatial discrimination learning</topic><topic>Swimming</topic><topic>Swimming behavior</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vouros, Avgoustinos</creatorcontrib><creatorcontrib>Gehring, Tiago V.</creatorcontrib><creatorcontrib>Szydlowska, Kinga</creatorcontrib><creatorcontrib>Janusz, Artur</creatorcontrib><creatorcontrib>Tu, Zehai</creatorcontrib><creatorcontrib>Croucher, Mike</creatorcontrib><creatorcontrib>Lukasiuk, Katarzyna</creatorcontrib><creatorcontrib>Konopka, Witold</creatorcontrib><creatorcontrib>Sandi, Carmen</creatorcontrib><creatorcontrib>Vasilaki, Eleni</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vouros, Avgoustinos</au><au>Gehring, Tiago V.</au><au>Szydlowska, Kinga</au><au>Janusz, Artur</au><au>Tu, Zehai</au><au>Croucher, Mike</au><au>Lukasiuk, Katarzyna</au><au>Konopka, Witold</au><au>Sandi, Carmen</au><au>Vasilaki, Eleni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A generalised framework for detailed classification of swimming paths inside the Morris Water Maze</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2018-10-10</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>15089</spage><epage>15</epage><pages>15089-15</pages><artnum>15089</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The Morris Water Maze is commonly used in behavioural neuroscience for the study of spatial learning with rodents. Over the years, various methods of analysing rodent data collected during this task have been proposed. These methods span from classical performance measurements to more sophisticated categorisation techniques which classify the animal swimming path into behavioural classes known as exploration strategies. Classification techniques provide additional insight into the different types of animal behaviours but still only a limited number of studies utilise them. This is primarily because they depend highly on machine learning knowledge. We have previously demonstrated that the animals implement various strategies and that classifying entire trajectories can lead to the loss of important information. In this work, we have developed a generalised and robust classification methodology to boost classification performance and nullify the need for manual tuning. We have also made available an open-source software based on this methodology.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30305680</pmid><doi>10.1038/s41598-018-33456-1</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-3383-6133</orcidid><orcidid>https://orcid.org/0000-0002-1582-0920</orcidid><orcidid>https://orcid.org/0000-0001-7713-8321</orcidid><orcidid>https://orcid.org/0000-0002-4994-2459</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2018-10, Vol.8 (1), p.15089-15, Article 15089
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6180070
source Publicly Available Content (ProQuest); PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 631/1647/2198/1760
631/378/1595/3922
Animal memory
Classification
Data processing
Exploration
Humanities and Social Sciences
Learning algorithms
multidisciplinary
Nervous system
Rodents
Science
Science (multidisciplinary)
Spatial discrimination learning
Swimming
Swimming behavior
title A generalised framework for detailed classification of swimming paths inside the Morris Water Maze
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A46%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20generalised%20framework%20for%20detailed%20classification%20of%20swimming%20paths%20inside%20the%20Morris%20Water%20Maze&rft.jtitle=Scientific%20reports&rft.au=Vouros,%20Avgoustinos&rft.date=2018-10-10&rft.volume=8&rft.issue=1&rft.spage=15089&rft.epage=15&rft.pages=15089-15&rft.artnum=15089&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-018-33456-1&rft_dat=%3Cproquest_pubme%3E2118312898%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-f0bbb1bda9bb37db005adacfe81ad350f24bc831fe3fd023e67de93e6c88f1ff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2117825746&rft_id=info:pmid/30305680&rfr_iscdi=true