Loading…
A generalised framework for detailed classification of swimming paths inside the Morris Water Maze
The Morris Water Maze is commonly used in behavioural neuroscience for the study of spatial learning with rodents. Over the years, various methods of analysing rodent data collected during this task have been proposed. These methods span from classical performance measurements to more sophisticated...
Saved in:
Published in: | Scientific reports 2018-10, Vol.8 (1), p.15089-15, Article 15089 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c474t-f0bbb1bda9bb37db005adacfe81ad350f24bc831fe3fd023e67de93e6c88f1ff3 |
---|---|
cites | cdi_FETCH-LOGICAL-c474t-f0bbb1bda9bb37db005adacfe81ad350f24bc831fe3fd023e67de93e6c88f1ff3 |
container_end_page | 15 |
container_issue | 1 |
container_start_page | 15089 |
container_title | Scientific reports |
container_volume | 8 |
creator | Vouros, Avgoustinos Gehring, Tiago V. Szydlowska, Kinga Janusz, Artur Tu, Zehai Croucher, Mike Lukasiuk, Katarzyna Konopka, Witold Sandi, Carmen Vasilaki, Eleni |
description | The Morris Water Maze is commonly used in behavioural neuroscience for the study of spatial learning with rodents. Over the years, various methods of analysing rodent data collected during this task have been proposed. These methods span from classical performance measurements to more sophisticated categorisation techniques which classify the animal swimming path into behavioural classes known as exploration strategies. Classification techniques provide additional insight into the different types of animal behaviours but still only a limited number of studies utilise them. This is primarily because they depend highly on machine learning knowledge. We have previously demonstrated that the animals implement various strategies and that classifying entire trajectories can lead to the loss of important information. In this work, we have developed a generalised and robust classification methodology to boost classification performance and nullify the need for manual tuning. We have also made available an open-source software based on this methodology. |
doi_str_mv | 10.1038/s41598-018-33456-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6180070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2118312898</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-f0bbb1bda9bb37db005adacfe81ad350f24bc831fe3fd023e67de93e6c88f1ff3</originalsourceid><addsrcrecordid>eNp9kcluFDEQhi0EIlGSF-CALHHh0uClF_cFKYogICXKBcTR8lKecei2B1dPInj6OEzIwgFfyqr66q8q_YS84uwdZ1K9x5Z3o2oYV42Ubdc3_BnZF6ztGiGFeP7ov0eOEC9ZfZ0YWz6-JHuSSdb1iu0Te0xXkKCYKSJ4GoqZ4TqXHzTkQj0sJk417SaDGEN0Zok50RwoXsd5jmlFN2ZZI40Jowe6rIGe51Ii0u9mgULPzW84JC-CmRCO7uIB-fbp49eTz83ZxemXk-OzxrVDuzSBWWu59Wa0Vg7e1nWNNy6A4sbLjgXRWqckDyCDZ0JCP3gYa3BKBR6CPCAfdrqbrZ3BO0hLPUtvSpxN-aWzifppJcW1XuUr3XPF2MCqwNs7gZJ_bgEXPUd0ME0mQd6iFpzX-UKNqqJv_kEv87aket4tNSjRDW1fKbGjXMmIBcL9MpzpWxf1zkVdXdR_XNS8Nr1-fMZ9y1_PKiB3ANZSWkF5mP0f2RuKSaqs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117825746</pqid></control><display><type>article</type><title>A generalised framework for detailed classification of swimming paths inside the Morris Water Maze</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Vouros, Avgoustinos ; Gehring, Tiago V. ; Szydlowska, Kinga ; Janusz, Artur ; Tu, Zehai ; Croucher, Mike ; Lukasiuk, Katarzyna ; Konopka, Witold ; Sandi, Carmen ; Vasilaki, Eleni</creator><creatorcontrib>Vouros, Avgoustinos ; Gehring, Tiago V. ; Szydlowska, Kinga ; Janusz, Artur ; Tu, Zehai ; Croucher, Mike ; Lukasiuk, Katarzyna ; Konopka, Witold ; Sandi, Carmen ; Vasilaki, Eleni</creatorcontrib><description>The Morris Water Maze is commonly used in behavioural neuroscience for the study of spatial learning with rodents. Over the years, various methods of analysing rodent data collected during this task have been proposed. These methods span from classical performance measurements to more sophisticated categorisation techniques which classify the animal swimming path into behavioural classes known as exploration strategies. Classification techniques provide additional insight into the different types of animal behaviours but still only a limited number of studies utilise them. This is primarily because they depend highly on machine learning knowledge. We have previously demonstrated that the animals implement various strategies and that classifying entire trajectories can lead to the loss of important information. In this work, we have developed a generalised and robust classification methodology to boost classification performance and nullify the need for manual tuning. We have also made available an open-source software based on this methodology.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-018-33456-1</identifier><identifier>PMID: 30305680</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/1647/2198/1760 ; 631/378/1595/3922 ; Animal memory ; Classification ; Data processing ; Exploration ; Humanities and Social Sciences ; Learning algorithms ; multidisciplinary ; Nervous system ; Rodents ; Science ; Science (multidisciplinary) ; Spatial discrimination learning ; Swimming ; Swimming behavior</subject><ispartof>Scientific reports, 2018-10, Vol.8 (1), p.15089-15, Article 15089</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-f0bbb1bda9bb37db005adacfe81ad350f24bc831fe3fd023e67de93e6c88f1ff3</citedby><cites>FETCH-LOGICAL-c474t-f0bbb1bda9bb37db005adacfe81ad350f24bc831fe3fd023e67de93e6c88f1ff3</cites><orcidid>0000-0002-3383-6133 ; 0000-0002-1582-0920 ; 0000-0001-7713-8321 ; 0000-0002-4994-2459</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2117825746/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2117825746?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30305680$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vouros, Avgoustinos</creatorcontrib><creatorcontrib>Gehring, Tiago V.</creatorcontrib><creatorcontrib>Szydlowska, Kinga</creatorcontrib><creatorcontrib>Janusz, Artur</creatorcontrib><creatorcontrib>Tu, Zehai</creatorcontrib><creatorcontrib>Croucher, Mike</creatorcontrib><creatorcontrib>Lukasiuk, Katarzyna</creatorcontrib><creatorcontrib>Konopka, Witold</creatorcontrib><creatorcontrib>Sandi, Carmen</creatorcontrib><creatorcontrib>Vasilaki, Eleni</creatorcontrib><title>A generalised framework for detailed classification of swimming paths inside the Morris Water Maze</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The Morris Water Maze is commonly used in behavioural neuroscience for the study of spatial learning with rodents. Over the years, various methods of analysing rodent data collected during this task have been proposed. These methods span from classical performance measurements to more sophisticated categorisation techniques which classify the animal swimming path into behavioural classes known as exploration strategies. Classification techniques provide additional insight into the different types of animal behaviours but still only a limited number of studies utilise them. This is primarily because they depend highly on machine learning knowledge. We have previously demonstrated that the animals implement various strategies and that classifying entire trajectories can lead to the loss of important information. In this work, we have developed a generalised and robust classification methodology to boost classification performance and nullify the need for manual tuning. We have also made available an open-source software based on this methodology.</description><subject>631/1647/2198/1760</subject><subject>631/378/1595/3922</subject><subject>Animal memory</subject><subject>Classification</subject><subject>Data processing</subject><subject>Exploration</subject><subject>Humanities and Social Sciences</subject><subject>Learning algorithms</subject><subject>multidisciplinary</subject><subject>Nervous system</subject><subject>Rodents</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Spatial discrimination learning</subject><subject>Swimming</subject><subject>Swimming behavior</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kcluFDEQhi0EIlGSF-CALHHh0uClF_cFKYogICXKBcTR8lKecei2B1dPInj6OEzIwgFfyqr66q8q_YS84uwdZ1K9x5Z3o2oYV42Ubdc3_BnZF6ztGiGFeP7ov0eOEC9ZfZ0YWz6-JHuSSdb1iu0Te0xXkKCYKSJ4GoqZ4TqXHzTkQj0sJk417SaDGEN0Zok50RwoXsd5jmlFN2ZZI40Jowe6rIGe51Ii0u9mgULPzW84JC-CmRCO7uIB-fbp49eTz83ZxemXk-OzxrVDuzSBWWu59Wa0Vg7e1nWNNy6A4sbLjgXRWqckDyCDZ0JCP3gYa3BKBR6CPCAfdrqbrZ3BO0hLPUtvSpxN-aWzifppJcW1XuUr3XPF2MCqwNs7gZJ_bgEXPUd0ME0mQd6iFpzX-UKNqqJv_kEv87aket4tNSjRDW1fKbGjXMmIBcL9MpzpWxf1zkVdXdR_XNS8Nr1-fMZ9y1_PKiB3ANZSWkF5mP0f2RuKSaqs</recordid><startdate>20181010</startdate><enddate>20181010</enddate><creator>Vouros, Avgoustinos</creator><creator>Gehring, Tiago V.</creator><creator>Szydlowska, Kinga</creator><creator>Janusz, Artur</creator><creator>Tu, Zehai</creator><creator>Croucher, Mike</creator><creator>Lukasiuk, Katarzyna</creator><creator>Konopka, Witold</creator><creator>Sandi, Carmen</creator><creator>Vasilaki, Eleni</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3383-6133</orcidid><orcidid>https://orcid.org/0000-0002-1582-0920</orcidid><orcidid>https://orcid.org/0000-0001-7713-8321</orcidid><orcidid>https://orcid.org/0000-0002-4994-2459</orcidid></search><sort><creationdate>20181010</creationdate><title>A generalised framework for detailed classification of swimming paths inside the Morris Water Maze</title><author>Vouros, Avgoustinos ; Gehring, Tiago V. ; Szydlowska, Kinga ; Janusz, Artur ; Tu, Zehai ; Croucher, Mike ; Lukasiuk, Katarzyna ; Konopka, Witold ; Sandi, Carmen ; Vasilaki, Eleni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-f0bbb1bda9bb37db005adacfe81ad350f24bc831fe3fd023e67de93e6c88f1ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>631/1647/2198/1760</topic><topic>631/378/1595/3922</topic><topic>Animal memory</topic><topic>Classification</topic><topic>Data processing</topic><topic>Exploration</topic><topic>Humanities and Social Sciences</topic><topic>Learning algorithms</topic><topic>multidisciplinary</topic><topic>Nervous system</topic><topic>Rodents</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Spatial discrimination learning</topic><topic>Swimming</topic><topic>Swimming behavior</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vouros, Avgoustinos</creatorcontrib><creatorcontrib>Gehring, Tiago V.</creatorcontrib><creatorcontrib>Szydlowska, Kinga</creatorcontrib><creatorcontrib>Janusz, Artur</creatorcontrib><creatorcontrib>Tu, Zehai</creatorcontrib><creatorcontrib>Croucher, Mike</creatorcontrib><creatorcontrib>Lukasiuk, Katarzyna</creatorcontrib><creatorcontrib>Konopka, Witold</creatorcontrib><creatorcontrib>Sandi, Carmen</creatorcontrib><creatorcontrib>Vasilaki, Eleni</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vouros, Avgoustinos</au><au>Gehring, Tiago V.</au><au>Szydlowska, Kinga</au><au>Janusz, Artur</au><au>Tu, Zehai</au><au>Croucher, Mike</au><au>Lukasiuk, Katarzyna</au><au>Konopka, Witold</au><au>Sandi, Carmen</au><au>Vasilaki, Eleni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A generalised framework for detailed classification of swimming paths inside the Morris Water Maze</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2018-10-10</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>15089</spage><epage>15</epage><pages>15089-15</pages><artnum>15089</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The Morris Water Maze is commonly used in behavioural neuroscience for the study of spatial learning with rodents. Over the years, various methods of analysing rodent data collected during this task have been proposed. These methods span from classical performance measurements to more sophisticated categorisation techniques which classify the animal swimming path into behavioural classes known as exploration strategies. Classification techniques provide additional insight into the different types of animal behaviours but still only a limited number of studies utilise them. This is primarily because they depend highly on machine learning knowledge. We have previously demonstrated that the animals implement various strategies and that classifying entire trajectories can lead to the loss of important information. In this work, we have developed a generalised and robust classification methodology to boost classification performance and nullify the need for manual tuning. We have also made available an open-source software based on this methodology.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30305680</pmid><doi>10.1038/s41598-018-33456-1</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-3383-6133</orcidid><orcidid>https://orcid.org/0000-0002-1582-0920</orcidid><orcidid>https://orcid.org/0000-0001-7713-8321</orcidid><orcidid>https://orcid.org/0000-0002-4994-2459</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2018-10, Vol.8 (1), p.15089-15, Article 15089 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6180070 |
source | Publicly Available Content (ProQuest); PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 631/1647/2198/1760 631/378/1595/3922 Animal memory Classification Data processing Exploration Humanities and Social Sciences Learning algorithms multidisciplinary Nervous system Rodents Science Science (multidisciplinary) Spatial discrimination learning Swimming Swimming behavior |
title | A generalised framework for detailed classification of swimming paths inside the Morris Water Maze |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A46%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20generalised%20framework%20for%20detailed%20classification%20of%20swimming%20paths%20inside%20the%20Morris%20Water%20Maze&rft.jtitle=Scientific%20reports&rft.au=Vouros,%20Avgoustinos&rft.date=2018-10-10&rft.volume=8&rft.issue=1&rft.spage=15089&rft.epage=15&rft.pages=15089-15&rft.artnum=15089&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-018-33456-1&rft_dat=%3Cproquest_pubme%3E2118312898%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-f0bbb1bda9bb37db005adacfe81ad350f24bc831fe3fd023e67de93e6c88f1ff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2117825746&rft_id=info:pmid/30305680&rfr_iscdi=true |