Loading…

Genome-wide identification, characterization, and evolutionary analysis of NBS-encoding resistance genes in barley

In this study, a systematic analysis of Nucleotide-Binding Site (NBS) disease resistance ( R ) gene family in the barley, Hordeum vulgare L. cv. Bowman, genome was performed. Using multiple computational analyses, we could identify 96 regular NBS-encoding genes and characterize them on the bases of...

Full description

Saved in:
Bibliographic Details
Published in:3 Biotech 2018-11, Vol.8 (11), p.453-453, Article 453
Main Authors: Habachi-Houimli, Yosra, Khalfallah, Yosra, Mezghani-Khemakhem, Maha, Makni, Hanem, Makni, Mohamed, Bouktila, Dhia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c551t-7aa35eb9028c05465658fbb733f7a5ecb2aaa6fb8fd9e53ae0210eb1c756fc113
cites cdi_FETCH-LOGICAL-c551t-7aa35eb9028c05465658fbb733f7a5ecb2aaa6fb8fd9e53ae0210eb1c756fc113
container_end_page 453
container_issue 11
container_start_page 453
container_title 3 Biotech
container_volume 8
creator Habachi-Houimli, Yosra
Khalfallah, Yosra
Mezghani-Khemakhem, Maha
Makni, Hanem
Makni, Mohamed
Bouktila, Dhia
description In this study, a systematic analysis of Nucleotide-Binding Site (NBS) disease resistance ( R ) gene family in the barley, Hordeum vulgare L. cv. Bowman, genome was performed. Using multiple computational analyses, we could identify 96 regular NBS-encoding genes and characterize them on the bases of structural diversity, conserved protein signatures, genomic distribution, gene duplications, differential expression, selection pressure, codon usage, regulation by microRNAs and phylogenetic relationships. Depending on the presence or absence of CC and LRR domains; the identified NBS genes were assigned to four distinct groups; NBS–LRR (53.1%), CC-NBS–LRR (14.6%), NBS (26%), and CC-NBS (6.3%). NBS-associated domain analysis revealed the presence of signal peptides, zinc fingers, diverse kinases, and other structural features. Eighty-five of the identified NBS-encoding genes were mapped onto the seven barley chromosomes, revealing that 50% of them were located on chromosomes 7H, 2H, and 3H, with a tendency of NBS genes to be clustered in the distal telomeric regions of the barley chromosomes. Nine gene clusters, representing 22.35% of total mapped barley NBS-encoding genes, were found, suggesting that tandem duplication stands for an important mechanism in the expansion of this gene family in barley. Phylogenetic analysis determined 31 HvNBS orthologs from rice and Brachypodium . 87 out of 96 HvNBSs were supported by expression evidence, exhibiting various and quantitatively uneven expression patterns across distinct tissues, organs, and development stages. Fourteen potential miRNA- R gene target pairs were further identified, providing insight into the regulation of NBS genes expression. These findings offer candidate target genes to engineer disease-resistant barley genotypes, and promote our understanding of the evolution of NBS-encoding genes in Poaceae crops.
doi_str_mv 10.1007/s13205-018-1478-6
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6195493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2189527020</sourcerecordid><originalsourceid>FETCH-LOGICAL-c551t-7aa35eb9028c05465658fbb733f7a5ecb2aaa6fb8fd9e53ae0210eb1c756fc113</originalsourceid><addsrcrecordid>eNqNkU2LFDEQhoMo7rLuD_AiDV482JpKOp3ORXAXXYVFDyp4C9Xp6tksPcmadK-Mv96MM44fIBgISaqeepPKy9hD4M-Ac_08gxRc1Ry6Ghrd1e0ddizA8Fpp2d097MXnI3aa8zUvQ4EywO-zI8ml5mCaY5YuKMQ11V_9QFWZYfajdzj7GJ5W7goTupmS_7aPYBgquo3Tsj1i2pQATpvscxXH6t3Zh5qCi4MPqypRic4YHFUrCpQrH6oe00SbB-zeiFOm0_16wj69fvXx_E19-f7i7fnLy9opBXOtEaWi3nDROa6aVrWqG_teSzlqVOR6gYjt2HfjYEhJJC6AUw9Oq3Z0APKEvdjp3iz9mgZXeks42Zvk1-XlNqK3f2aCv7KreGtbMKoxsgg82Quk-GWhPNu1z46mCQPFJVsBnVFCc8H_AxWt4VoLXdDHf6HXcUnlG39QwhjRQFco2FEuxZwTjYd3A7db_-3Of1v8t1v_bVtqHv3e8KHip9sFEDsgl1RYUfp19b9VvwP-PL0T</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2122992418</pqid></control><display><type>article</type><title>Genome-wide identification, characterization, and evolutionary analysis of NBS-encoding resistance genes in barley</title><source>PubMed (Medline)</source><source>Springer Link</source><creator>Habachi-Houimli, Yosra ; Khalfallah, Yosra ; Mezghani-Khemakhem, Maha ; Makni, Hanem ; Makni, Mohamed ; Bouktila, Dhia</creator><creatorcontrib>Habachi-Houimli, Yosra ; Khalfallah, Yosra ; Mezghani-Khemakhem, Maha ; Makni, Hanem ; Makni, Mohamed ; Bouktila, Dhia</creatorcontrib><description>In this study, a systematic analysis of Nucleotide-Binding Site (NBS) disease resistance ( R ) gene family in the barley, Hordeum vulgare L. cv. Bowman, genome was performed. Using multiple computational analyses, we could identify 96 regular NBS-encoding genes and characterize them on the bases of structural diversity, conserved protein signatures, genomic distribution, gene duplications, differential expression, selection pressure, codon usage, regulation by microRNAs and phylogenetic relationships. Depending on the presence or absence of CC and LRR domains; the identified NBS genes were assigned to four distinct groups; NBS–LRR (53.1%), CC-NBS–LRR (14.6%), NBS (26%), and CC-NBS (6.3%). NBS-associated domain analysis revealed the presence of signal peptides, zinc fingers, diverse kinases, and other structural features. Eighty-five of the identified NBS-encoding genes were mapped onto the seven barley chromosomes, revealing that 50% of them were located on chromosomes 7H, 2H, and 3H, with a tendency of NBS genes to be clustered in the distal telomeric regions of the barley chromosomes. Nine gene clusters, representing 22.35% of total mapped barley NBS-encoding genes, were found, suggesting that tandem duplication stands for an important mechanism in the expansion of this gene family in barley. Phylogenetic analysis determined 31 HvNBS orthologs from rice and Brachypodium . 87 out of 96 HvNBSs were supported by expression evidence, exhibiting various and quantitatively uneven expression patterns across distinct tissues, organs, and development stages. Fourteen potential miRNA- R gene target pairs were further identified, providing insight into the regulation of NBS genes expression. These findings offer candidate target genes to engineer disease-resistant barley genotypes, and promote our understanding of the evolution of NBS-encoding genes in Poaceae crops.</description><identifier>ISSN: 2190-572X</identifier><identifier>EISSN: 2190-5738</identifier><identifier>DOI: 10.1007/s13205-018-1478-6</identifier><identifier>PMID: 30370194</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Agriculture ; Barley ; Binding sites ; Bioinformatics ; Biological evolution ; Biomaterials ; Biotechnology ; Brachypodium ; Cancer Research ; Chemistry ; Chemistry and Materials Science ; Chromosomes ; Computer applications ; crops ; Developmental stages ; Disease resistance ; Domains ; Evolutionary genetics ; Gene clusters ; gene duplication ; Gene expression ; gene expression regulation ; Gene regulation ; Genes ; Genomes ; genomics ; genotype ; Genotypes ; Hordeum vulgare ; Kinases ; microRNA ; miRNA ; multigene family ; Organs ; Original ; Original Article ; Peptides ; phosphotransferases (kinases) ; Phylogenetics ; Phylogeny ; plant tissues ; Proteins ; Reproduction (copying) ; resistance genes ; rice ; selection pressure ; signal peptide ; Signal peptides ; Stem Cells ; Stress concentration ; Target recognition ; telomeres ; zinc finger motif ; Zinc finger proteins</subject><ispartof>3 Biotech, 2018-11, Vol.8 (11), p.453-453, Article 453</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>3 Biotech is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c551t-7aa35eb9028c05465658fbb733f7a5ecb2aaa6fb8fd9e53ae0210eb1c756fc113</citedby><cites>FETCH-LOGICAL-c551t-7aa35eb9028c05465658fbb733f7a5ecb2aaa6fb8fd9e53ae0210eb1c756fc113</cites><orcidid>0000-0002-7360-5161</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6195493/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6195493/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30370194$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Habachi-Houimli, Yosra</creatorcontrib><creatorcontrib>Khalfallah, Yosra</creatorcontrib><creatorcontrib>Mezghani-Khemakhem, Maha</creatorcontrib><creatorcontrib>Makni, Hanem</creatorcontrib><creatorcontrib>Makni, Mohamed</creatorcontrib><creatorcontrib>Bouktila, Dhia</creatorcontrib><title>Genome-wide identification, characterization, and evolutionary analysis of NBS-encoding resistance genes in barley</title><title>3 Biotech</title><addtitle>3 Biotech</addtitle><addtitle>3 Biotech</addtitle><description>In this study, a systematic analysis of Nucleotide-Binding Site (NBS) disease resistance ( R ) gene family in the barley, Hordeum vulgare L. cv. Bowman, genome was performed. Using multiple computational analyses, we could identify 96 regular NBS-encoding genes and characterize them on the bases of structural diversity, conserved protein signatures, genomic distribution, gene duplications, differential expression, selection pressure, codon usage, regulation by microRNAs and phylogenetic relationships. Depending on the presence or absence of CC and LRR domains; the identified NBS genes were assigned to four distinct groups; NBS–LRR (53.1%), CC-NBS–LRR (14.6%), NBS (26%), and CC-NBS (6.3%). NBS-associated domain analysis revealed the presence of signal peptides, zinc fingers, diverse kinases, and other structural features. Eighty-five of the identified NBS-encoding genes were mapped onto the seven barley chromosomes, revealing that 50% of them were located on chromosomes 7H, 2H, and 3H, with a tendency of NBS genes to be clustered in the distal telomeric regions of the barley chromosomes. Nine gene clusters, representing 22.35% of total mapped barley NBS-encoding genes, were found, suggesting that tandem duplication stands for an important mechanism in the expansion of this gene family in barley. Phylogenetic analysis determined 31 HvNBS orthologs from rice and Brachypodium . 87 out of 96 HvNBSs were supported by expression evidence, exhibiting various and quantitatively uneven expression patterns across distinct tissues, organs, and development stages. Fourteen potential miRNA- R gene target pairs were further identified, providing insight into the regulation of NBS genes expression. These findings offer candidate target genes to engineer disease-resistant barley genotypes, and promote our understanding of the evolution of NBS-encoding genes in Poaceae crops.</description><subject>Agriculture</subject><subject>Barley</subject><subject>Binding sites</subject><subject>Bioinformatics</subject><subject>Biological evolution</subject><subject>Biomaterials</subject><subject>Biotechnology</subject><subject>Brachypodium</subject><subject>Cancer Research</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chromosomes</subject><subject>Computer applications</subject><subject>crops</subject><subject>Developmental stages</subject><subject>Disease resistance</subject><subject>Domains</subject><subject>Evolutionary genetics</subject><subject>Gene clusters</subject><subject>gene duplication</subject><subject>Gene expression</subject><subject>gene expression regulation</subject><subject>Gene regulation</subject><subject>Genes</subject><subject>Genomes</subject><subject>genomics</subject><subject>genotype</subject><subject>Genotypes</subject><subject>Hordeum vulgare</subject><subject>Kinases</subject><subject>microRNA</subject><subject>miRNA</subject><subject>multigene family</subject><subject>Organs</subject><subject>Original</subject><subject>Original Article</subject><subject>Peptides</subject><subject>phosphotransferases (kinases)</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>plant tissues</subject><subject>Proteins</subject><subject>Reproduction (copying)</subject><subject>resistance genes</subject><subject>rice</subject><subject>selection pressure</subject><subject>signal peptide</subject><subject>Signal peptides</subject><subject>Stem Cells</subject><subject>Stress concentration</subject><subject>Target recognition</subject><subject>telomeres</subject><subject>zinc finger motif</subject><subject>Zinc finger proteins</subject><issn>2190-572X</issn><issn>2190-5738</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNkU2LFDEQhoMo7rLuD_AiDV482JpKOp3ORXAXXYVFDyp4C9Xp6tksPcmadK-Mv96MM44fIBgISaqeepPKy9hD4M-Ac_08gxRc1Ry6Ghrd1e0ddizA8Fpp2d097MXnI3aa8zUvQ4EywO-zI8ml5mCaY5YuKMQ11V_9QFWZYfajdzj7GJ5W7goTupmS_7aPYBgquo3Tsj1i2pQATpvscxXH6t3Zh5qCi4MPqypRic4YHFUrCpQrH6oe00SbB-zeiFOm0_16wj69fvXx_E19-f7i7fnLy9opBXOtEaWi3nDROa6aVrWqG_teSzlqVOR6gYjt2HfjYEhJJC6AUw9Oq3Z0APKEvdjp3iz9mgZXeks42Zvk1-XlNqK3f2aCv7KreGtbMKoxsgg82Quk-GWhPNu1z46mCQPFJVsBnVFCc8H_AxWt4VoLXdDHf6HXcUnlG39QwhjRQFco2FEuxZwTjYd3A7db_-3Of1v8t1v_bVtqHv3e8KHip9sFEDsgl1RYUfp19b9VvwP-PL0T</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Habachi-Houimli, Yosra</creator><creator>Khalfallah, Yosra</creator><creator>Mezghani-Khemakhem, Maha</creator><creator>Makni, Hanem</creator><creator>Makni, Mohamed</creator><creator>Bouktila, Dhia</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7360-5161</orcidid></search><sort><creationdate>20181101</creationdate><title>Genome-wide identification, characterization, and evolutionary analysis of NBS-encoding resistance genes in barley</title><author>Habachi-Houimli, Yosra ; Khalfallah, Yosra ; Mezghani-Khemakhem, Maha ; Makni, Hanem ; Makni, Mohamed ; Bouktila, Dhia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c551t-7aa35eb9028c05465658fbb733f7a5ecb2aaa6fb8fd9e53ae0210eb1c756fc113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Agriculture</topic><topic>Barley</topic><topic>Binding sites</topic><topic>Bioinformatics</topic><topic>Biological evolution</topic><topic>Biomaterials</topic><topic>Biotechnology</topic><topic>Brachypodium</topic><topic>Cancer Research</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chromosomes</topic><topic>Computer applications</topic><topic>crops</topic><topic>Developmental stages</topic><topic>Disease resistance</topic><topic>Domains</topic><topic>Evolutionary genetics</topic><topic>Gene clusters</topic><topic>gene duplication</topic><topic>Gene expression</topic><topic>gene expression regulation</topic><topic>Gene regulation</topic><topic>Genes</topic><topic>Genomes</topic><topic>genomics</topic><topic>genotype</topic><topic>Genotypes</topic><topic>Hordeum vulgare</topic><topic>Kinases</topic><topic>microRNA</topic><topic>miRNA</topic><topic>multigene family</topic><topic>Organs</topic><topic>Original</topic><topic>Original Article</topic><topic>Peptides</topic><topic>phosphotransferases (kinases)</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>plant tissues</topic><topic>Proteins</topic><topic>Reproduction (copying)</topic><topic>resistance genes</topic><topic>rice</topic><topic>selection pressure</topic><topic>signal peptide</topic><topic>Signal peptides</topic><topic>Stem Cells</topic><topic>Stress concentration</topic><topic>Target recognition</topic><topic>telomeres</topic><topic>zinc finger motif</topic><topic>Zinc finger proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Habachi-Houimli, Yosra</creatorcontrib><creatorcontrib>Khalfallah, Yosra</creatorcontrib><creatorcontrib>Mezghani-Khemakhem, Maha</creatorcontrib><creatorcontrib>Makni, Hanem</creatorcontrib><creatorcontrib>Makni, Mohamed</creatorcontrib><creatorcontrib>Bouktila, Dhia</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>3 Biotech</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Habachi-Houimli, Yosra</au><au>Khalfallah, Yosra</au><au>Mezghani-Khemakhem, Maha</au><au>Makni, Hanem</au><au>Makni, Mohamed</au><au>Bouktila, Dhia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome-wide identification, characterization, and evolutionary analysis of NBS-encoding resistance genes in barley</atitle><jtitle>3 Biotech</jtitle><stitle>3 Biotech</stitle><addtitle>3 Biotech</addtitle><date>2018-11-01</date><risdate>2018</risdate><volume>8</volume><issue>11</issue><spage>453</spage><epage>453</epage><pages>453-453</pages><artnum>453</artnum><issn>2190-572X</issn><eissn>2190-5738</eissn><abstract>In this study, a systematic analysis of Nucleotide-Binding Site (NBS) disease resistance ( R ) gene family in the barley, Hordeum vulgare L. cv. Bowman, genome was performed. Using multiple computational analyses, we could identify 96 regular NBS-encoding genes and characterize them on the bases of structural diversity, conserved protein signatures, genomic distribution, gene duplications, differential expression, selection pressure, codon usage, regulation by microRNAs and phylogenetic relationships. Depending on the presence or absence of CC and LRR domains; the identified NBS genes were assigned to four distinct groups; NBS–LRR (53.1%), CC-NBS–LRR (14.6%), NBS (26%), and CC-NBS (6.3%). NBS-associated domain analysis revealed the presence of signal peptides, zinc fingers, diverse kinases, and other structural features. Eighty-five of the identified NBS-encoding genes were mapped onto the seven barley chromosomes, revealing that 50% of them were located on chromosomes 7H, 2H, and 3H, with a tendency of NBS genes to be clustered in the distal telomeric regions of the barley chromosomes. Nine gene clusters, representing 22.35% of total mapped barley NBS-encoding genes, were found, suggesting that tandem duplication stands for an important mechanism in the expansion of this gene family in barley. Phylogenetic analysis determined 31 HvNBS orthologs from rice and Brachypodium . 87 out of 96 HvNBSs were supported by expression evidence, exhibiting various and quantitatively uneven expression patterns across distinct tissues, organs, and development stages. Fourteen potential miRNA- R gene target pairs were further identified, providing insight into the regulation of NBS genes expression. These findings offer candidate target genes to engineer disease-resistant barley genotypes, and promote our understanding of the evolution of NBS-encoding genes in Poaceae crops.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>30370194</pmid><doi>10.1007/s13205-018-1478-6</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7360-5161</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2190-572X
ispartof 3 Biotech, 2018-11, Vol.8 (11), p.453-453, Article 453
issn 2190-572X
2190-5738
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6195493
source PubMed (Medline); Springer Link
subjects Agriculture
Barley
Binding sites
Bioinformatics
Biological evolution
Biomaterials
Biotechnology
Brachypodium
Cancer Research
Chemistry
Chemistry and Materials Science
Chromosomes
Computer applications
crops
Developmental stages
Disease resistance
Domains
Evolutionary genetics
Gene clusters
gene duplication
Gene expression
gene expression regulation
Gene regulation
Genes
Genomes
genomics
genotype
Genotypes
Hordeum vulgare
Kinases
microRNA
miRNA
multigene family
Organs
Original
Original Article
Peptides
phosphotransferases (kinases)
Phylogenetics
Phylogeny
plant tissues
Proteins
Reproduction (copying)
resistance genes
rice
selection pressure
signal peptide
Signal peptides
Stem Cells
Stress concentration
Target recognition
telomeres
zinc finger motif
Zinc finger proteins
title Genome-wide identification, characterization, and evolutionary analysis of NBS-encoding resistance genes in barley
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T05%3A51%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome-wide%20identification,%20characterization,%20and%20evolutionary%20analysis%20of%20NBS-encoding%20resistance%20genes%20in%20barley&rft.jtitle=3%20Biotech&rft.au=Habachi-Houimli,%20Yosra&rft.date=2018-11-01&rft.volume=8&rft.issue=11&rft.spage=453&rft.epage=453&rft.pages=453-453&rft.artnum=453&rft.issn=2190-572X&rft.eissn=2190-5738&rft_id=info:doi/10.1007/s13205-018-1478-6&rft_dat=%3Cproquest_pubme%3E2189527020%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c551t-7aa35eb9028c05465658fbb733f7a5ecb2aaa6fb8fd9e53ae0210eb1c756fc113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2122992418&rft_id=info:pmid/30370194&rfr_iscdi=true