Loading…
Genome-wide identification, characterization, and evolutionary analysis of NBS-encoding resistance genes in barley
In this study, a systematic analysis of Nucleotide-Binding Site (NBS) disease resistance ( R ) gene family in the barley, Hordeum vulgare L. cv. Bowman, genome was performed. Using multiple computational analyses, we could identify 96 regular NBS-encoding genes and characterize them on the bases of...
Saved in:
Published in: | 3 Biotech 2018-11, Vol.8 (11), p.453-453, Article 453 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c551t-7aa35eb9028c05465658fbb733f7a5ecb2aaa6fb8fd9e53ae0210eb1c756fc113 |
---|---|
cites | cdi_FETCH-LOGICAL-c551t-7aa35eb9028c05465658fbb733f7a5ecb2aaa6fb8fd9e53ae0210eb1c756fc113 |
container_end_page | 453 |
container_issue | 11 |
container_start_page | 453 |
container_title | 3 Biotech |
container_volume | 8 |
creator | Habachi-Houimli, Yosra Khalfallah, Yosra Mezghani-Khemakhem, Maha Makni, Hanem Makni, Mohamed Bouktila, Dhia |
description | In this study, a systematic analysis of Nucleotide-Binding Site (NBS) disease resistance (
R
) gene family in the barley,
Hordeum vulgare
L. cv. Bowman, genome was performed. Using multiple computational analyses, we could identify 96 regular NBS-encoding genes and characterize them on the bases of structural diversity, conserved protein signatures, genomic distribution, gene duplications, differential expression, selection pressure, codon usage, regulation by microRNAs and phylogenetic relationships. Depending on the presence or absence of CC and LRR domains; the identified NBS genes were assigned to four distinct groups; NBS–LRR (53.1%), CC-NBS–LRR (14.6%), NBS (26%), and CC-NBS (6.3%). NBS-associated domain analysis revealed the presence of signal peptides, zinc fingers, diverse kinases, and other structural features. Eighty-five of the identified NBS-encoding genes were mapped onto the seven barley chromosomes, revealing that 50% of them were located on chromosomes 7H, 2H, and 3H, with a tendency of NBS genes to be clustered in the distal telomeric regions of the barley chromosomes. Nine gene clusters, representing 22.35% of total mapped barley NBS-encoding genes, were found, suggesting that tandem duplication stands for an important mechanism in the expansion of this gene family in barley. Phylogenetic analysis determined 31 HvNBS orthologs from rice and
Brachypodium
. 87 out of 96 HvNBSs were supported by expression evidence, exhibiting various and quantitatively uneven expression patterns across distinct tissues, organs, and development stages. Fourteen potential miRNA-
R
gene target pairs were further identified, providing insight into the regulation of NBS genes expression. These findings offer candidate target genes to engineer disease-resistant barley genotypes, and promote our understanding of the evolution of NBS-encoding genes in Poaceae crops. |
doi_str_mv | 10.1007/s13205-018-1478-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6195493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2189527020</sourcerecordid><originalsourceid>FETCH-LOGICAL-c551t-7aa35eb9028c05465658fbb733f7a5ecb2aaa6fb8fd9e53ae0210eb1c756fc113</originalsourceid><addsrcrecordid>eNqNkU2LFDEQhoMo7rLuD_AiDV482JpKOp3ORXAXXYVFDyp4C9Xp6tksPcmadK-Mv96MM44fIBgISaqeepPKy9hD4M-Ac_08gxRc1Ry6Ghrd1e0ddizA8Fpp2d097MXnI3aa8zUvQ4EywO-zI8ml5mCaY5YuKMQ11V_9QFWZYfajdzj7GJ5W7goTupmS_7aPYBgquo3Tsj1i2pQATpvscxXH6t3Zh5qCi4MPqypRic4YHFUrCpQrH6oe00SbB-zeiFOm0_16wj69fvXx_E19-f7i7fnLy9opBXOtEaWi3nDROa6aVrWqG_teSzlqVOR6gYjt2HfjYEhJJC6AUw9Oq3Z0APKEvdjp3iz9mgZXeks42Zvk1-XlNqK3f2aCv7KreGtbMKoxsgg82Quk-GWhPNu1z46mCQPFJVsBnVFCc8H_AxWt4VoLXdDHf6HXcUnlG39QwhjRQFco2FEuxZwTjYd3A7db_-3Of1v8t1v_bVtqHv3e8KHip9sFEDsgl1RYUfp19b9VvwP-PL0T</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2122992418</pqid></control><display><type>article</type><title>Genome-wide identification, characterization, and evolutionary analysis of NBS-encoding resistance genes in barley</title><source>PubMed (Medline)</source><source>Springer Link</source><creator>Habachi-Houimli, Yosra ; Khalfallah, Yosra ; Mezghani-Khemakhem, Maha ; Makni, Hanem ; Makni, Mohamed ; Bouktila, Dhia</creator><creatorcontrib>Habachi-Houimli, Yosra ; Khalfallah, Yosra ; Mezghani-Khemakhem, Maha ; Makni, Hanem ; Makni, Mohamed ; Bouktila, Dhia</creatorcontrib><description>In this study, a systematic analysis of Nucleotide-Binding Site (NBS) disease resistance (
R
) gene family in the barley,
Hordeum vulgare
L. cv. Bowman, genome was performed. Using multiple computational analyses, we could identify 96 regular NBS-encoding genes and characterize them on the bases of structural diversity, conserved protein signatures, genomic distribution, gene duplications, differential expression, selection pressure, codon usage, regulation by microRNAs and phylogenetic relationships. Depending on the presence or absence of CC and LRR domains; the identified NBS genes were assigned to four distinct groups; NBS–LRR (53.1%), CC-NBS–LRR (14.6%), NBS (26%), and CC-NBS (6.3%). NBS-associated domain analysis revealed the presence of signal peptides, zinc fingers, diverse kinases, and other structural features. Eighty-five of the identified NBS-encoding genes were mapped onto the seven barley chromosomes, revealing that 50% of them were located on chromosomes 7H, 2H, and 3H, with a tendency of NBS genes to be clustered in the distal telomeric regions of the barley chromosomes. Nine gene clusters, representing 22.35% of total mapped barley NBS-encoding genes, were found, suggesting that tandem duplication stands for an important mechanism in the expansion of this gene family in barley. Phylogenetic analysis determined 31 HvNBS orthologs from rice and
Brachypodium
. 87 out of 96 HvNBSs were supported by expression evidence, exhibiting various and quantitatively uneven expression patterns across distinct tissues, organs, and development stages. Fourteen potential miRNA-
R
gene target pairs were further identified, providing insight into the regulation of NBS genes expression. These findings offer candidate target genes to engineer disease-resistant barley genotypes, and promote our understanding of the evolution of NBS-encoding genes in Poaceae crops.</description><identifier>ISSN: 2190-572X</identifier><identifier>EISSN: 2190-5738</identifier><identifier>DOI: 10.1007/s13205-018-1478-6</identifier><identifier>PMID: 30370194</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Agriculture ; Barley ; Binding sites ; Bioinformatics ; Biological evolution ; Biomaterials ; Biotechnology ; Brachypodium ; Cancer Research ; Chemistry ; Chemistry and Materials Science ; Chromosomes ; Computer applications ; crops ; Developmental stages ; Disease resistance ; Domains ; Evolutionary genetics ; Gene clusters ; gene duplication ; Gene expression ; gene expression regulation ; Gene regulation ; Genes ; Genomes ; genomics ; genotype ; Genotypes ; Hordeum vulgare ; Kinases ; microRNA ; miRNA ; multigene family ; Organs ; Original ; Original Article ; Peptides ; phosphotransferases (kinases) ; Phylogenetics ; Phylogeny ; plant tissues ; Proteins ; Reproduction (copying) ; resistance genes ; rice ; selection pressure ; signal peptide ; Signal peptides ; Stem Cells ; Stress concentration ; Target recognition ; telomeres ; zinc finger motif ; Zinc finger proteins</subject><ispartof>3 Biotech, 2018-11, Vol.8 (11), p.453-453, Article 453</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>3 Biotech is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c551t-7aa35eb9028c05465658fbb733f7a5ecb2aaa6fb8fd9e53ae0210eb1c756fc113</citedby><cites>FETCH-LOGICAL-c551t-7aa35eb9028c05465658fbb733f7a5ecb2aaa6fb8fd9e53ae0210eb1c756fc113</cites><orcidid>0000-0002-7360-5161</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6195493/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6195493/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30370194$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Habachi-Houimli, Yosra</creatorcontrib><creatorcontrib>Khalfallah, Yosra</creatorcontrib><creatorcontrib>Mezghani-Khemakhem, Maha</creatorcontrib><creatorcontrib>Makni, Hanem</creatorcontrib><creatorcontrib>Makni, Mohamed</creatorcontrib><creatorcontrib>Bouktila, Dhia</creatorcontrib><title>Genome-wide identification, characterization, and evolutionary analysis of NBS-encoding resistance genes in barley</title><title>3 Biotech</title><addtitle>3 Biotech</addtitle><addtitle>3 Biotech</addtitle><description>In this study, a systematic analysis of Nucleotide-Binding Site (NBS) disease resistance (
R
) gene family in the barley,
Hordeum vulgare
L. cv. Bowman, genome was performed. Using multiple computational analyses, we could identify 96 regular NBS-encoding genes and characterize them on the bases of structural diversity, conserved protein signatures, genomic distribution, gene duplications, differential expression, selection pressure, codon usage, regulation by microRNAs and phylogenetic relationships. Depending on the presence or absence of CC and LRR domains; the identified NBS genes were assigned to four distinct groups; NBS–LRR (53.1%), CC-NBS–LRR (14.6%), NBS (26%), and CC-NBS (6.3%). NBS-associated domain analysis revealed the presence of signal peptides, zinc fingers, diverse kinases, and other structural features. Eighty-five of the identified NBS-encoding genes were mapped onto the seven barley chromosomes, revealing that 50% of them were located on chromosomes 7H, 2H, and 3H, with a tendency of NBS genes to be clustered in the distal telomeric regions of the barley chromosomes. Nine gene clusters, representing 22.35% of total mapped barley NBS-encoding genes, were found, suggesting that tandem duplication stands for an important mechanism in the expansion of this gene family in barley. Phylogenetic analysis determined 31 HvNBS orthologs from rice and
Brachypodium
. 87 out of 96 HvNBSs were supported by expression evidence, exhibiting various and quantitatively uneven expression patterns across distinct tissues, organs, and development stages. Fourteen potential miRNA-
R
gene target pairs were further identified, providing insight into the regulation of NBS genes expression. These findings offer candidate target genes to engineer disease-resistant barley genotypes, and promote our understanding of the evolution of NBS-encoding genes in Poaceae crops.</description><subject>Agriculture</subject><subject>Barley</subject><subject>Binding sites</subject><subject>Bioinformatics</subject><subject>Biological evolution</subject><subject>Biomaterials</subject><subject>Biotechnology</subject><subject>Brachypodium</subject><subject>Cancer Research</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chromosomes</subject><subject>Computer applications</subject><subject>crops</subject><subject>Developmental stages</subject><subject>Disease resistance</subject><subject>Domains</subject><subject>Evolutionary genetics</subject><subject>Gene clusters</subject><subject>gene duplication</subject><subject>Gene expression</subject><subject>gene expression regulation</subject><subject>Gene regulation</subject><subject>Genes</subject><subject>Genomes</subject><subject>genomics</subject><subject>genotype</subject><subject>Genotypes</subject><subject>Hordeum vulgare</subject><subject>Kinases</subject><subject>microRNA</subject><subject>miRNA</subject><subject>multigene family</subject><subject>Organs</subject><subject>Original</subject><subject>Original Article</subject><subject>Peptides</subject><subject>phosphotransferases (kinases)</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>plant tissues</subject><subject>Proteins</subject><subject>Reproduction (copying)</subject><subject>resistance genes</subject><subject>rice</subject><subject>selection pressure</subject><subject>signal peptide</subject><subject>Signal peptides</subject><subject>Stem Cells</subject><subject>Stress concentration</subject><subject>Target recognition</subject><subject>telomeres</subject><subject>zinc finger motif</subject><subject>Zinc finger proteins</subject><issn>2190-572X</issn><issn>2190-5738</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNkU2LFDEQhoMo7rLuD_AiDV482JpKOp3ORXAXXYVFDyp4C9Xp6tksPcmadK-Mv96MM44fIBgISaqeepPKy9hD4M-Ac_08gxRc1Ry6Ghrd1e0ddizA8Fpp2d097MXnI3aa8zUvQ4EywO-zI8ml5mCaY5YuKMQ11V_9QFWZYfajdzj7GJ5W7goTupmS_7aPYBgquo3Tsj1i2pQATpvscxXH6t3Zh5qCi4MPqypRic4YHFUrCpQrH6oe00SbB-zeiFOm0_16wj69fvXx_E19-f7i7fnLy9opBXOtEaWi3nDROa6aVrWqG_teSzlqVOR6gYjt2HfjYEhJJC6AUw9Oq3Z0APKEvdjp3iz9mgZXeks42Zvk1-XlNqK3f2aCv7KreGtbMKoxsgg82Quk-GWhPNu1z46mCQPFJVsBnVFCc8H_AxWt4VoLXdDHf6HXcUnlG39QwhjRQFco2FEuxZwTjYd3A7db_-3Of1v8t1v_bVtqHv3e8KHip9sFEDsgl1RYUfp19b9VvwP-PL0T</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Habachi-Houimli, Yosra</creator><creator>Khalfallah, Yosra</creator><creator>Mezghani-Khemakhem, Maha</creator><creator>Makni, Hanem</creator><creator>Makni, Mohamed</creator><creator>Bouktila, Dhia</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7360-5161</orcidid></search><sort><creationdate>20181101</creationdate><title>Genome-wide identification, characterization, and evolutionary analysis of NBS-encoding resistance genes in barley</title><author>Habachi-Houimli, Yosra ; Khalfallah, Yosra ; Mezghani-Khemakhem, Maha ; Makni, Hanem ; Makni, Mohamed ; Bouktila, Dhia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c551t-7aa35eb9028c05465658fbb733f7a5ecb2aaa6fb8fd9e53ae0210eb1c756fc113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Agriculture</topic><topic>Barley</topic><topic>Binding sites</topic><topic>Bioinformatics</topic><topic>Biological evolution</topic><topic>Biomaterials</topic><topic>Biotechnology</topic><topic>Brachypodium</topic><topic>Cancer Research</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chromosomes</topic><topic>Computer applications</topic><topic>crops</topic><topic>Developmental stages</topic><topic>Disease resistance</topic><topic>Domains</topic><topic>Evolutionary genetics</topic><topic>Gene clusters</topic><topic>gene duplication</topic><topic>Gene expression</topic><topic>gene expression regulation</topic><topic>Gene regulation</topic><topic>Genes</topic><topic>Genomes</topic><topic>genomics</topic><topic>genotype</topic><topic>Genotypes</topic><topic>Hordeum vulgare</topic><topic>Kinases</topic><topic>microRNA</topic><topic>miRNA</topic><topic>multigene family</topic><topic>Organs</topic><topic>Original</topic><topic>Original Article</topic><topic>Peptides</topic><topic>phosphotransferases (kinases)</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>plant tissues</topic><topic>Proteins</topic><topic>Reproduction (copying)</topic><topic>resistance genes</topic><topic>rice</topic><topic>selection pressure</topic><topic>signal peptide</topic><topic>Signal peptides</topic><topic>Stem Cells</topic><topic>Stress concentration</topic><topic>Target recognition</topic><topic>telomeres</topic><topic>zinc finger motif</topic><topic>Zinc finger proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Habachi-Houimli, Yosra</creatorcontrib><creatorcontrib>Khalfallah, Yosra</creatorcontrib><creatorcontrib>Mezghani-Khemakhem, Maha</creatorcontrib><creatorcontrib>Makni, Hanem</creatorcontrib><creatorcontrib>Makni, Mohamed</creatorcontrib><creatorcontrib>Bouktila, Dhia</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>3 Biotech</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Habachi-Houimli, Yosra</au><au>Khalfallah, Yosra</au><au>Mezghani-Khemakhem, Maha</au><au>Makni, Hanem</au><au>Makni, Mohamed</au><au>Bouktila, Dhia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome-wide identification, characterization, and evolutionary analysis of NBS-encoding resistance genes in barley</atitle><jtitle>3 Biotech</jtitle><stitle>3 Biotech</stitle><addtitle>3 Biotech</addtitle><date>2018-11-01</date><risdate>2018</risdate><volume>8</volume><issue>11</issue><spage>453</spage><epage>453</epage><pages>453-453</pages><artnum>453</artnum><issn>2190-572X</issn><eissn>2190-5738</eissn><abstract>In this study, a systematic analysis of Nucleotide-Binding Site (NBS) disease resistance (
R
) gene family in the barley,
Hordeum vulgare
L. cv. Bowman, genome was performed. Using multiple computational analyses, we could identify 96 regular NBS-encoding genes and characterize them on the bases of structural diversity, conserved protein signatures, genomic distribution, gene duplications, differential expression, selection pressure, codon usage, regulation by microRNAs and phylogenetic relationships. Depending on the presence or absence of CC and LRR domains; the identified NBS genes were assigned to four distinct groups; NBS–LRR (53.1%), CC-NBS–LRR (14.6%), NBS (26%), and CC-NBS (6.3%). NBS-associated domain analysis revealed the presence of signal peptides, zinc fingers, diverse kinases, and other structural features. Eighty-five of the identified NBS-encoding genes were mapped onto the seven barley chromosomes, revealing that 50% of them were located on chromosomes 7H, 2H, and 3H, with a tendency of NBS genes to be clustered in the distal telomeric regions of the barley chromosomes. Nine gene clusters, representing 22.35% of total mapped barley NBS-encoding genes, were found, suggesting that tandem duplication stands for an important mechanism in the expansion of this gene family in barley. Phylogenetic analysis determined 31 HvNBS orthologs from rice and
Brachypodium
. 87 out of 96 HvNBSs were supported by expression evidence, exhibiting various and quantitatively uneven expression patterns across distinct tissues, organs, and development stages. Fourteen potential miRNA-
R
gene target pairs were further identified, providing insight into the regulation of NBS genes expression. These findings offer candidate target genes to engineer disease-resistant barley genotypes, and promote our understanding of the evolution of NBS-encoding genes in Poaceae crops.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>30370194</pmid><doi>10.1007/s13205-018-1478-6</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7360-5161</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2190-572X |
ispartof | 3 Biotech, 2018-11, Vol.8 (11), p.453-453, Article 453 |
issn | 2190-572X 2190-5738 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6195493 |
source | PubMed (Medline); Springer Link |
subjects | Agriculture Barley Binding sites Bioinformatics Biological evolution Biomaterials Biotechnology Brachypodium Cancer Research Chemistry Chemistry and Materials Science Chromosomes Computer applications crops Developmental stages Disease resistance Domains Evolutionary genetics Gene clusters gene duplication Gene expression gene expression regulation Gene regulation Genes Genomes genomics genotype Genotypes Hordeum vulgare Kinases microRNA miRNA multigene family Organs Original Original Article Peptides phosphotransferases (kinases) Phylogenetics Phylogeny plant tissues Proteins Reproduction (copying) resistance genes rice selection pressure signal peptide Signal peptides Stem Cells Stress concentration Target recognition telomeres zinc finger motif Zinc finger proteins |
title | Genome-wide identification, characterization, and evolutionary analysis of NBS-encoding resistance genes in barley |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T05%3A51%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome-wide%20identification,%20characterization,%20and%20evolutionary%20analysis%20of%20NBS-encoding%20resistance%20genes%20in%20barley&rft.jtitle=3%20Biotech&rft.au=Habachi-Houimli,%20Yosra&rft.date=2018-11-01&rft.volume=8&rft.issue=11&rft.spage=453&rft.epage=453&rft.pages=453-453&rft.artnum=453&rft.issn=2190-572X&rft.eissn=2190-5738&rft_id=info:doi/10.1007/s13205-018-1478-6&rft_dat=%3Cproquest_pubme%3E2189527020%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c551t-7aa35eb9028c05465658fbb733f7a5ecb2aaa6fb8fd9e53ae0210eb1c756fc113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2122992418&rft_id=info:pmid/30370194&rfr_iscdi=true |