Loading…

Bispectrum Features and Multilayer Perceptron Classifier to Enhance Seizure Prediction

The ability to accurately forecast seizures could significantly improve the quality of life of patients with drug-refractory epilepsy. Prediction capabilities rely on the adequate identification of seizure activity precursors from electroencephalography recordings. Although a long list of features h...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2018-10, Vol.8 (1), p.15491-8, Article 15491
Main Authors: Bou Assi, Elie, Gagliano, Laura, Rihana, Sandy, Nguyen, Dang K., Sawan, Mohamad
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c474t-d864f477defc5c152943b524ecef284f5fef2d17b93b89488b1c05d92469342e3
cites cdi_FETCH-LOGICAL-c474t-d864f477defc5c152943b524ecef284f5fef2d17b93b89488b1c05d92469342e3
container_end_page 8
container_issue 1
container_start_page 15491
container_title Scientific reports
container_volume 8
creator Bou Assi, Elie
Gagliano, Laura
Rihana, Sandy
Nguyen, Dang K.
Sawan, Mohamad
description The ability to accurately forecast seizures could significantly improve the quality of life of patients with drug-refractory epilepsy. Prediction capabilities rely on the adequate identification of seizure activity precursors from electroencephalography recordings. Although a long list of features has been proposed, none of these is able to independently characterize the brain states during transition to a seizure. This work assessed the feasibility of using the bispectrum, an advanced signal processing technique based on higher order statistics, as a precursor of seizure activity. Quantitative features were extracted from the bispectrum and passed through two statistical tests to check for significant differences between preictal and interictal recordings. Results showed statistically significant differences (p 
doi_str_mv 10.1038/s41598-018-33969-9
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6195594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2123716757</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-d864f477defc5c152943b524ecef284f5fef2d17b93b89488b1c05d92469342e3</originalsourceid><addsrcrecordid>eNp9kU1PGzEQhq0K1KCUP9ADWqkXLgv-3F1fkNoIClIqIgG9Wl7vbDDa2KntRYJfX5PQlPaAL2PNPPPOjF6EPhN8QjBrTiMnQjYlJk3JmKxkKT-gA4q5KCmjdO_Nf4IOY3zA-QkqOZEf0YRhxgmr8QH6-c3GNZgUxlVxATqNAWKhXVf8GIdkB_0EoVhAMLBOwbtiNugYbW9zNvni3N1rZ6C4AfucG4tFgM6aZL37hPZ7PUQ4fI1TdHdxfju7LOfX369mX-el4TVPZddUvOd13UFvhCEv-7FWUA4GetrwXvQ5dqRuJWsbyZumJQaLTlJeScYpsCk62-qux3YFnQGXgh7UOtiVDk_Ka6v-rTh7r5b-UVVECpGnTdHxq0Dwv0aISa1sNDAM2oEfo6KEsppUtagz-uU_9MGPweXzNhTmVFKWKbqlTPAxBuh3yxCsXpxTW-dUdk5tnFMyNx29PWPX8senDLAtEHPJLSH8nf2O7G_A4aTT</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2123042923</pqid></control><display><type>article</type><title>Bispectrum Features and Multilayer Perceptron Classifier to Enhance Seizure Prediction</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Bou Assi, Elie ; Gagliano, Laura ; Rihana, Sandy ; Nguyen, Dang K. ; Sawan, Mohamad</creator><creatorcontrib>Bou Assi, Elie ; Gagliano, Laura ; Rihana, Sandy ; Nguyen, Dang K. ; Sawan, Mohamad</creatorcontrib><description>The ability to accurately forecast seizures could significantly improve the quality of life of patients with drug-refractory epilepsy. Prediction capabilities rely on the adequate identification of seizure activity precursors from electroencephalography recordings. Although a long list of features has been proposed, none of these is able to independently characterize the brain states during transition to a seizure. This work assessed the feasibility of using the bispectrum, an advanced signal processing technique based on higher order statistics, as a precursor of seizure activity. Quantitative features were extracted from the bispectrum and passed through two statistical tests to check for significant differences between preictal and interictal recordings. Results showed statistically significant differences (p &lt; 0.05) between preictal and interictal states using all bispectrum-extracted features. We used normalized bispectral entropy, normalized bispectral squared entropy, and mean of magnitude as inputs to a 5-layer multilayer perceptron classifier and achieved respective held-out test accuracies of 78.11%, 72.64%, and 73.26%.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-018-33969-9</identifier><identifier>PMID: 30341370</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/378/116/2396 ; 692/617/375/178 ; Convulsions &amp; seizures ; Data processing ; EEG ; Entropy ; Epilepsy ; Humanities and Social Sciences ; multidisciplinary ; Quality of life ; Science ; Science (multidisciplinary) ; Seizures ; Signal processing ; Statistical analysis</subject><ispartof>Scientific reports, 2018-10, Vol.8 (1), p.15491-8, Article 15491</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-d864f477defc5c152943b524ecef284f5fef2d17b93b89488b1c05d92469342e3</citedby><cites>FETCH-LOGICAL-c474t-d864f477defc5c152943b524ecef284f5fef2d17b93b89488b1c05d92469342e3</cites><orcidid>0000-0001-8248-2565</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2123042923/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2123042923?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74997</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30341370$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bou Assi, Elie</creatorcontrib><creatorcontrib>Gagliano, Laura</creatorcontrib><creatorcontrib>Rihana, Sandy</creatorcontrib><creatorcontrib>Nguyen, Dang K.</creatorcontrib><creatorcontrib>Sawan, Mohamad</creatorcontrib><title>Bispectrum Features and Multilayer Perceptron Classifier to Enhance Seizure Prediction</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The ability to accurately forecast seizures could significantly improve the quality of life of patients with drug-refractory epilepsy. Prediction capabilities rely on the adequate identification of seizure activity precursors from electroencephalography recordings. Although a long list of features has been proposed, none of these is able to independently characterize the brain states during transition to a seizure. This work assessed the feasibility of using the bispectrum, an advanced signal processing technique based on higher order statistics, as a precursor of seizure activity. Quantitative features were extracted from the bispectrum and passed through two statistical tests to check for significant differences between preictal and interictal recordings. Results showed statistically significant differences (p &lt; 0.05) between preictal and interictal states using all bispectrum-extracted features. We used normalized bispectral entropy, normalized bispectral squared entropy, and mean of magnitude as inputs to a 5-layer multilayer perceptron classifier and achieved respective held-out test accuracies of 78.11%, 72.64%, and 73.26%.</description><subject>631/378/116/2396</subject><subject>692/617/375/178</subject><subject>Convulsions &amp; seizures</subject><subject>Data processing</subject><subject>EEG</subject><subject>Entropy</subject><subject>Epilepsy</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Quality of life</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Seizures</subject><subject>Signal processing</subject><subject>Statistical analysis</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kU1PGzEQhq0K1KCUP9ADWqkXLgv-3F1fkNoIClIqIgG9Wl7vbDDa2KntRYJfX5PQlPaAL2PNPPPOjF6EPhN8QjBrTiMnQjYlJk3JmKxkKT-gA4q5KCmjdO_Nf4IOY3zA-QkqOZEf0YRhxgmr8QH6-c3GNZgUxlVxATqNAWKhXVf8GIdkB_0EoVhAMLBOwbtiNugYbW9zNvni3N1rZ6C4AfucG4tFgM6aZL37hPZ7PUQ4fI1TdHdxfju7LOfX369mX-el4TVPZddUvOd13UFvhCEv-7FWUA4GetrwXvQ5dqRuJWsbyZumJQaLTlJeScYpsCk62-qux3YFnQGXgh7UOtiVDk_Ka6v-rTh7r5b-UVVECpGnTdHxq0Dwv0aISa1sNDAM2oEfo6KEsppUtagz-uU_9MGPweXzNhTmVFKWKbqlTPAxBuh3yxCsXpxTW-dUdk5tnFMyNx29PWPX8senDLAtEHPJLSH8nf2O7G_A4aTT</recordid><startdate>20181019</startdate><enddate>20181019</enddate><creator>Bou Assi, Elie</creator><creator>Gagliano, Laura</creator><creator>Rihana, Sandy</creator><creator>Nguyen, Dang K.</creator><creator>Sawan, Mohamad</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8248-2565</orcidid></search><sort><creationdate>20181019</creationdate><title>Bispectrum Features and Multilayer Perceptron Classifier to Enhance Seizure Prediction</title><author>Bou Assi, Elie ; Gagliano, Laura ; Rihana, Sandy ; Nguyen, Dang K. ; Sawan, Mohamad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-d864f477defc5c152943b524ecef284f5fef2d17b93b89488b1c05d92469342e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>631/378/116/2396</topic><topic>692/617/375/178</topic><topic>Convulsions &amp; seizures</topic><topic>Data processing</topic><topic>EEG</topic><topic>Entropy</topic><topic>Epilepsy</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Quality of life</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Seizures</topic><topic>Signal processing</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bou Assi, Elie</creatorcontrib><creatorcontrib>Gagliano, Laura</creatorcontrib><creatorcontrib>Rihana, Sandy</creatorcontrib><creatorcontrib>Nguyen, Dang K.</creatorcontrib><creatorcontrib>Sawan, Mohamad</creatorcontrib><collection>Springer Nature Open Access Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bou Assi, Elie</au><au>Gagliano, Laura</au><au>Rihana, Sandy</au><au>Nguyen, Dang K.</au><au>Sawan, Mohamad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bispectrum Features and Multilayer Perceptron Classifier to Enhance Seizure Prediction</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2018-10-19</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>15491</spage><epage>8</epage><pages>15491-8</pages><artnum>15491</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The ability to accurately forecast seizures could significantly improve the quality of life of patients with drug-refractory epilepsy. Prediction capabilities rely on the adequate identification of seizure activity precursors from electroencephalography recordings. Although a long list of features has been proposed, none of these is able to independently characterize the brain states during transition to a seizure. This work assessed the feasibility of using the bispectrum, an advanced signal processing technique based on higher order statistics, as a precursor of seizure activity. Quantitative features were extracted from the bispectrum and passed through two statistical tests to check for significant differences between preictal and interictal recordings. Results showed statistically significant differences (p &lt; 0.05) between preictal and interictal states using all bispectrum-extracted features. We used normalized bispectral entropy, normalized bispectral squared entropy, and mean of magnitude as inputs to a 5-layer multilayer perceptron classifier and achieved respective held-out test accuracies of 78.11%, 72.64%, and 73.26%.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30341370</pmid><doi>10.1038/s41598-018-33969-9</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8248-2565</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2018-10, Vol.8 (1), p.15491-8, Article 15491
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6195594
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 631/378/116/2396
692/617/375/178
Convulsions & seizures
Data processing
EEG
Entropy
Epilepsy
Humanities and Social Sciences
multidisciplinary
Quality of life
Science
Science (multidisciplinary)
Seizures
Signal processing
Statistical analysis
title Bispectrum Features and Multilayer Perceptron Classifier to Enhance Seizure Prediction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A58%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bispectrum%20Features%20and%20Multilayer%20Perceptron%20Classifier%20to%20Enhance%20Seizure%20Prediction&rft.jtitle=Scientific%20reports&rft.au=Bou%20Assi,%20Elie&rft.date=2018-10-19&rft.volume=8&rft.issue=1&rft.spage=15491&rft.epage=8&rft.pages=15491-8&rft.artnum=15491&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-018-33969-9&rft_dat=%3Cproquest_pubme%3E2123716757%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-d864f477defc5c152943b524ecef284f5fef2d17b93b89488b1c05d92469342e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2123042923&rft_id=info:pmid/30341370&rfr_iscdi=true