Loading…
Bispectrum Features and Multilayer Perceptron Classifier to Enhance Seizure Prediction
The ability to accurately forecast seizures could significantly improve the quality of life of patients with drug-refractory epilepsy. Prediction capabilities rely on the adequate identification of seizure activity precursors from electroencephalography recordings. Although a long list of features h...
Saved in:
Published in: | Scientific reports 2018-10, Vol.8 (1), p.15491-8, Article 15491 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c474t-d864f477defc5c152943b524ecef284f5fef2d17b93b89488b1c05d92469342e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c474t-d864f477defc5c152943b524ecef284f5fef2d17b93b89488b1c05d92469342e3 |
container_end_page | 8 |
container_issue | 1 |
container_start_page | 15491 |
container_title | Scientific reports |
container_volume | 8 |
creator | Bou Assi, Elie Gagliano, Laura Rihana, Sandy Nguyen, Dang K. Sawan, Mohamad |
description | The ability to accurately forecast seizures could significantly improve the quality of life of patients with drug-refractory epilepsy. Prediction capabilities rely on the adequate identification of seizure activity precursors from electroencephalography recordings. Although a long list of features has been proposed, none of these is able to independently characterize the brain states during transition to a seizure. This work assessed the feasibility of using the bispectrum, an advanced signal processing technique based on higher order statistics, as a precursor of seizure activity. Quantitative features were extracted from the bispectrum and passed through two statistical tests to check for significant differences between preictal and interictal recordings. Results showed statistically significant differences (p |
doi_str_mv | 10.1038/s41598-018-33969-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6195594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2123716757</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-d864f477defc5c152943b524ecef284f5fef2d17b93b89488b1c05d92469342e3</originalsourceid><addsrcrecordid>eNp9kU1PGzEQhq0K1KCUP9ADWqkXLgv-3F1fkNoIClIqIgG9Wl7vbDDa2KntRYJfX5PQlPaAL2PNPPPOjF6EPhN8QjBrTiMnQjYlJk3JmKxkKT-gA4q5KCmjdO_Nf4IOY3zA-QkqOZEf0YRhxgmr8QH6-c3GNZgUxlVxATqNAWKhXVf8GIdkB_0EoVhAMLBOwbtiNugYbW9zNvni3N1rZ6C4AfucG4tFgM6aZL37hPZ7PUQ4fI1TdHdxfju7LOfX369mX-el4TVPZddUvOd13UFvhCEv-7FWUA4GetrwXvQ5dqRuJWsbyZumJQaLTlJeScYpsCk62-qux3YFnQGXgh7UOtiVDk_Ka6v-rTh7r5b-UVVECpGnTdHxq0Dwv0aISa1sNDAM2oEfo6KEsppUtagz-uU_9MGPweXzNhTmVFKWKbqlTPAxBuh3yxCsXpxTW-dUdk5tnFMyNx29PWPX8senDLAtEHPJLSH8nf2O7G_A4aTT</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2123042923</pqid></control><display><type>article</type><title>Bispectrum Features and Multilayer Perceptron Classifier to Enhance Seizure Prediction</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Bou Assi, Elie ; Gagliano, Laura ; Rihana, Sandy ; Nguyen, Dang K. ; Sawan, Mohamad</creator><creatorcontrib>Bou Assi, Elie ; Gagliano, Laura ; Rihana, Sandy ; Nguyen, Dang K. ; Sawan, Mohamad</creatorcontrib><description>The ability to accurately forecast seizures could significantly improve the quality of life of patients with drug-refractory epilepsy. Prediction capabilities rely on the adequate identification of seizure activity precursors from electroencephalography recordings. Although a long list of features has been proposed, none of these is able to independently characterize the brain states during transition to a seizure. This work assessed the feasibility of using the bispectrum, an advanced signal processing technique based on higher order statistics, as a precursor of seizure activity. Quantitative features were extracted from the bispectrum and passed through two statistical tests to check for significant differences between preictal and interictal recordings. Results showed statistically significant differences (p < 0.05) between preictal and interictal states using all bispectrum-extracted features. We used normalized bispectral entropy, normalized bispectral squared entropy, and mean of magnitude as inputs to a 5-layer multilayer perceptron classifier and achieved respective held-out test accuracies of 78.11%, 72.64%, and 73.26%.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-018-33969-9</identifier><identifier>PMID: 30341370</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/378/116/2396 ; 692/617/375/178 ; Convulsions & seizures ; Data processing ; EEG ; Entropy ; Epilepsy ; Humanities and Social Sciences ; multidisciplinary ; Quality of life ; Science ; Science (multidisciplinary) ; Seizures ; Signal processing ; Statistical analysis</subject><ispartof>Scientific reports, 2018-10, Vol.8 (1), p.15491-8, Article 15491</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-d864f477defc5c152943b524ecef284f5fef2d17b93b89488b1c05d92469342e3</citedby><cites>FETCH-LOGICAL-c474t-d864f477defc5c152943b524ecef284f5fef2d17b93b89488b1c05d92469342e3</cites><orcidid>0000-0001-8248-2565</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2123042923/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2123042923?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74997</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30341370$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bou Assi, Elie</creatorcontrib><creatorcontrib>Gagliano, Laura</creatorcontrib><creatorcontrib>Rihana, Sandy</creatorcontrib><creatorcontrib>Nguyen, Dang K.</creatorcontrib><creatorcontrib>Sawan, Mohamad</creatorcontrib><title>Bispectrum Features and Multilayer Perceptron Classifier to Enhance Seizure Prediction</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The ability to accurately forecast seizures could significantly improve the quality of life of patients with drug-refractory epilepsy. Prediction capabilities rely on the adequate identification of seizure activity precursors from electroencephalography recordings. Although a long list of features has been proposed, none of these is able to independently characterize the brain states during transition to a seizure. This work assessed the feasibility of using the bispectrum, an advanced signal processing technique based on higher order statistics, as a precursor of seizure activity. Quantitative features were extracted from the bispectrum and passed through two statistical tests to check for significant differences between preictal and interictal recordings. Results showed statistically significant differences (p < 0.05) between preictal and interictal states using all bispectrum-extracted features. We used normalized bispectral entropy, normalized bispectral squared entropy, and mean of magnitude as inputs to a 5-layer multilayer perceptron classifier and achieved respective held-out test accuracies of 78.11%, 72.64%, and 73.26%.</description><subject>631/378/116/2396</subject><subject>692/617/375/178</subject><subject>Convulsions & seizures</subject><subject>Data processing</subject><subject>EEG</subject><subject>Entropy</subject><subject>Epilepsy</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Quality of life</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Seizures</subject><subject>Signal processing</subject><subject>Statistical analysis</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kU1PGzEQhq0K1KCUP9ADWqkXLgv-3F1fkNoIClIqIgG9Wl7vbDDa2KntRYJfX5PQlPaAL2PNPPPOjF6EPhN8QjBrTiMnQjYlJk3JmKxkKT-gA4q5KCmjdO_Nf4IOY3zA-QkqOZEf0YRhxgmr8QH6-c3GNZgUxlVxATqNAWKhXVf8GIdkB_0EoVhAMLBOwbtiNugYbW9zNvni3N1rZ6C4AfucG4tFgM6aZL37hPZ7PUQ4fI1TdHdxfju7LOfX369mX-el4TVPZddUvOd13UFvhCEv-7FWUA4GetrwXvQ5dqRuJWsbyZumJQaLTlJeScYpsCk62-qux3YFnQGXgh7UOtiVDk_Ka6v-rTh7r5b-UVVECpGnTdHxq0Dwv0aISa1sNDAM2oEfo6KEsppUtagz-uU_9MGPweXzNhTmVFKWKbqlTPAxBuh3yxCsXpxTW-dUdk5tnFMyNx29PWPX8senDLAtEHPJLSH8nf2O7G_A4aTT</recordid><startdate>20181019</startdate><enddate>20181019</enddate><creator>Bou Assi, Elie</creator><creator>Gagliano, Laura</creator><creator>Rihana, Sandy</creator><creator>Nguyen, Dang K.</creator><creator>Sawan, Mohamad</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8248-2565</orcidid></search><sort><creationdate>20181019</creationdate><title>Bispectrum Features and Multilayer Perceptron Classifier to Enhance Seizure Prediction</title><author>Bou Assi, Elie ; Gagliano, Laura ; Rihana, Sandy ; Nguyen, Dang K. ; Sawan, Mohamad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-d864f477defc5c152943b524ecef284f5fef2d17b93b89488b1c05d92469342e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>631/378/116/2396</topic><topic>692/617/375/178</topic><topic>Convulsions & seizures</topic><topic>Data processing</topic><topic>EEG</topic><topic>Entropy</topic><topic>Epilepsy</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Quality of life</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Seizures</topic><topic>Signal processing</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bou Assi, Elie</creatorcontrib><creatorcontrib>Gagliano, Laura</creatorcontrib><creatorcontrib>Rihana, Sandy</creatorcontrib><creatorcontrib>Nguyen, Dang K.</creatorcontrib><creatorcontrib>Sawan, Mohamad</creatorcontrib><collection>Springer Nature Open Access Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bou Assi, Elie</au><au>Gagliano, Laura</au><au>Rihana, Sandy</au><au>Nguyen, Dang K.</au><au>Sawan, Mohamad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bispectrum Features and Multilayer Perceptron Classifier to Enhance Seizure Prediction</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2018-10-19</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>15491</spage><epage>8</epage><pages>15491-8</pages><artnum>15491</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The ability to accurately forecast seizures could significantly improve the quality of life of patients with drug-refractory epilepsy. Prediction capabilities rely on the adequate identification of seizure activity precursors from electroencephalography recordings. Although a long list of features has been proposed, none of these is able to independently characterize the brain states during transition to a seizure. This work assessed the feasibility of using the bispectrum, an advanced signal processing technique based on higher order statistics, as a precursor of seizure activity. Quantitative features were extracted from the bispectrum and passed through two statistical tests to check for significant differences between preictal and interictal recordings. Results showed statistically significant differences (p < 0.05) between preictal and interictal states using all bispectrum-extracted features. We used normalized bispectral entropy, normalized bispectral squared entropy, and mean of magnitude as inputs to a 5-layer multilayer perceptron classifier and achieved respective held-out test accuracies of 78.11%, 72.64%, and 73.26%.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30341370</pmid><doi>10.1038/s41598-018-33969-9</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8248-2565</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2018-10, Vol.8 (1), p.15491-8, Article 15491 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6195594 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 631/378/116/2396 692/617/375/178 Convulsions & seizures Data processing EEG Entropy Epilepsy Humanities and Social Sciences multidisciplinary Quality of life Science Science (multidisciplinary) Seizures Signal processing Statistical analysis |
title | Bispectrum Features and Multilayer Perceptron Classifier to Enhance Seizure Prediction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A58%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bispectrum%20Features%20and%20Multilayer%20Perceptron%20Classifier%20to%20Enhance%20Seizure%20Prediction&rft.jtitle=Scientific%20reports&rft.au=Bou%20Assi,%20Elie&rft.date=2018-10-19&rft.volume=8&rft.issue=1&rft.spage=15491&rft.epage=8&rft.pages=15491-8&rft.artnum=15491&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-018-33969-9&rft_dat=%3Cproquest_pubme%3E2123716757%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-d864f477defc5c152943b524ecef284f5fef2d17b93b89488b1c05d92469342e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2123042923&rft_id=info:pmid/30341370&rfr_iscdi=true |