Loading…

Study of Bauschinger effect of acicular ferrite and polygonal ferrite through ex-situ interrupted bending tests in API X80 linepipe steels

Linepipe steels complexly consisted of low-temperature transformation microstructures of bainitic ferrite, granular bainite, and acicular ferrite (AF) as well as polygonal ferrite (PF) which individually affect the Bauschinger effect occurring during the pipe-forming. In this study, microscopic anal...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2018-10, Vol.8 (1), p.15598-12, Article 15598
Main Authors: Kim, Dae Woong, Sohn, Seok Su, Kim, Wan-Keun, Kim, Ki-Seok, Lee, Sunghak
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Linepipe steels complexly consisted of low-temperature transformation microstructures of bainitic ferrite, granular bainite, and acicular ferrite (AF) as well as polygonal ferrite (PF) which individually affect the Bauschinger effect occurring during the pipe-forming. In this study, microscopic analyses of electron back-scattered diffraction (EBSD) coupled with tension-compression and interrupted bending tests were performed for verification of the Bauschinger effect of AF and PF working as major microstructures in single-phase- and two-phase-rolled API X80 steels, respectively. With respect to microstructural effects on Bauschinger effect, the reduction in mobile dislocation density during the flattening was smaller in the AF than in the PF. However, the dislocation pile-up at low-angle substructures and high-angle grain boundaries was more frequently observed, thereby leading to the higher back stress and Bauschinger effect in the AF. Boundary kernel average misorientation (KAM) profile played a critical role in determining the Bauschinger effect because they were closely related with the back stress. Thus, the Bauschinger effect was higher in the single-phase-rolled steel than in the two-phase-rolled steel. The present ex-situ interrupted bending methods coupled with EBSD analyses are outstanding ones for the detailed explanation of Bauschinger effect and provide an important idea for the yield strength designs of linepipe steels.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-018-34046-x