Loading…

Radiomics signature of computed tomography imaging for prediction of survival and chemotherapeutic benefits in gastric cancer

To develop and validate a radiomics signature for the prediction of gastric cancer (GC) survival and chemotherapeutic benefits. In this multicenter retrospective analysis, we analyzed the radiomics features of portal venous-phase computed tomography in 1591 consecutive patients. A radiomics signatur...

Full description

Saved in:
Bibliographic Details
Published in:EBioMedicine 2018-10, Vol.36, p.171-182
Main Authors: Jiang, Yuming, Chen, Chuanli, Xie, Jingjing, Wang, Wei, Zha, Xuefan, Lv, Wenbing, Chen, Hao, Hu, Yanfeng, Li, Tuanjie, Yu, Jiang, Zhou, Zhiwei, Xu, Yikai, Li, Guoxin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c525t-6d4dd239047c689a27f57f6761efb7366538723b2a152ba8780289762adc7c333
cites cdi_FETCH-LOGICAL-c525t-6d4dd239047c689a27f57f6761efb7366538723b2a152ba8780289762adc7c333
container_end_page 182
container_issue
container_start_page 171
container_title EBioMedicine
container_volume 36
creator Jiang, Yuming
Chen, Chuanli
Xie, Jingjing
Wang, Wei
Zha, Xuefan
Lv, Wenbing
Chen, Hao
Hu, Yanfeng
Li, Tuanjie
Yu, Jiang
Zhou, Zhiwei
Xu, Yikai
Li, Guoxin
description To develop and validate a radiomics signature for the prediction of gastric cancer (GC) survival and chemotherapeutic benefits. In this multicenter retrospective analysis, we analyzed the radiomics features of portal venous-phase computed tomography in 1591 consecutive patients. A radiomics signature was generated by using the Lasso-Cox regression model in 228 patients and validated in internal and external validation cohorts. Radiomics nomograms integrating the radiomics signature were constructed, demonstrating the incremental value of the radiomics signature to the traditional staging system for individualized survival estimation. The performance of the nomograms was assessed with respect to calibration, discrimination, and clinical usefulness. The radiomics signature consisted of 19 selected features and was significantly associated with DFS (disease-free survival) and OS (overall survival). Multivariate analysis demonstrated that the radiomics signature was an independent prognostic factor. Incorporating the radiomics signature into the radiomics-based nomograms resulted in better performance for the estimation of DFS and OS than the clinicopathological nomograms and TNM staging system, with improved accuracy of the classification of survival outcomes. Further analysis showed that stage II and III patients with higher radiomics scores exhibited a favorable response to chemotherapy. In conclusion, the newly developed radiomics signature is a powerful predictor of DFS and OS, and it may predict which patients with stage II and III GC benefit from chemotherapy.
doi_str_mv 10.1016/j.ebiom.2018.09.007
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6197796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2352396418303645</els_id><sourcerecordid>2109332648</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-6d4dd239047c689a27f57f6761efb7366538723b2a152ba8780289762adc7c333</originalsourceid><addsrcrecordid>eNp9kUuLFDEUhYMozjDOLxAkSzdd5lGVVBYKMviCAUF0HVLJreo0VUmZpBpm4X83bY_DuHGVcHPOuTf3Q-glJQ0lVLw5NDD4uDSM0L4hqiFEPkGXjHdsx5Vonz66X6DrnA-EENq1tdg_RxecMNZyyi_Rr2_G1RxvM85-CqZsCXAcsY3LuhVwuMQlTsms-zvsFzP5MOExJrwmcN4WH8NJnbd09EczYxMctntYYtlDNcFWvMUDBBh9ydgHPJlcUq1ZEyykF-jZaOYM1_fnFfrx8cP3m8-726-fvty8v93ZjnVlJ1zrHOOKtNKKXhkmx06OQgoK4yC5EB3vJeMDM7Rjg-llT1ivpGDGWWk551fo3Tl33YYFnIVQkpn1muqX0p2Oxut_X4Lf6yketaBKSiVqwOv7gBR_bpCLXny2MM8mQNyyZpQozplo-yrlZ6lNMecE40MbSvSJnT7oP-z0iZ0mSld21fXq8YQPnr-kquDtWQB1T0cPSWfroS7R-QS2aBf9fxv8BviLrsQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2109332648</pqid></control><display><type>article</type><title>Radiomics signature of computed tomography imaging for prediction of survival and chemotherapeutic benefits in gastric cancer</title><source>ScienceDirect Journals</source><source>PubMed Central</source><creator>Jiang, Yuming ; Chen, Chuanli ; Xie, Jingjing ; Wang, Wei ; Zha, Xuefan ; Lv, Wenbing ; Chen, Hao ; Hu, Yanfeng ; Li, Tuanjie ; Yu, Jiang ; Zhou, Zhiwei ; Xu, Yikai ; Li, Guoxin</creator><creatorcontrib>Jiang, Yuming ; Chen, Chuanli ; Xie, Jingjing ; Wang, Wei ; Zha, Xuefan ; Lv, Wenbing ; Chen, Hao ; Hu, Yanfeng ; Li, Tuanjie ; Yu, Jiang ; Zhou, Zhiwei ; Xu, Yikai ; Li, Guoxin</creatorcontrib><description>To develop and validate a radiomics signature for the prediction of gastric cancer (GC) survival and chemotherapeutic benefits. In this multicenter retrospective analysis, we analyzed the radiomics features of portal venous-phase computed tomography in 1591 consecutive patients. A radiomics signature was generated by using the Lasso-Cox regression model in 228 patients and validated in internal and external validation cohorts. Radiomics nomograms integrating the radiomics signature were constructed, demonstrating the incremental value of the radiomics signature to the traditional staging system for individualized survival estimation. The performance of the nomograms was assessed with respect to calibration, discrimination, and clinical usefulness. The radiomics signature consisted of 19 selected features and was significantly associated with DFS (disease-free survival) and OS (overall survival). Multivariate analysis demonstrated that the radiomics signature was an independent prognostic factor. Incorporating the radiomics signature into the radiomics-based nomograms resulted in better performance for the estimation of DFS and OS than the clinicopathological nomograms and TNM staging system, with improved accuracy of the classification of survival outcomes. Further analysis showed that stage II and III patients with higher radiomics scores exhibited a favorable response to chemotherapy. In conclusion, the newly developed radiomics signature is a powerful predictor of DFS and OS, and it may predict which patients with stage II and III GC benefit from chemotherapy.</description><identifier>ISSN: 2352-3964</identifier><identifier>EISSN: 2352-3964</identifier><identifier>DOI: 10.1016/j.ebiom.2018.09.007</identifier><identifier>PMID: 30224313</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Adult ; Aged ; Antineoplastic Combined Chemotherapy Protocols - therapeutic use ; Biomarkers ; Chemotherapy ; Comorbidity ; Female ; Gastric cancer ; Humans ; Image Processing, Computer-Assisted ; Male ; Middle Aged ; Neoplasm Grading ; Neoplasm Staging ; Prognosis ; Radiomics signature ; Reproducibility of Results ; Research paper ; ROC Curve ; Stomach Neoplasms - diagnostic imaging ; Stomach Neoplasms - drug therapy ; Stomach Neoplasms - mortality ; Tomography, X-Ray Computed - methods ; Treatment Outcome</subject><ispartof>EBioMedicine, 2018-10, Vol.36, p.171-182</ispartof><rights>2018</rights><rights>Copyright © 2018. Published by Elsevier B.V.</rights><rights>2018 Published by Elsevier B.V. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-6d4dd239047c689a27f57f6761efb7366538723b2a152ba8780289762adc7c333</citedby><cites>FETCH-LOGICAL-c525t-6d4dd239047c689a27f57f6761efb7366538723b2a152ba8780289762adc7c333</cites><orcidid>0000-0001-6184-3931 ; 0000-0002-8583-8595</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6197796/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2352396418303645$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30224313$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Yuming</creatorcontrib><creatorcontrib>Chen, Chuanli</creatorcontrib><creatorcontrib>Xie, Jingjing</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Zha, Xuefan</creatorcontrib><creatorcontrib>Lv, Wenbing</creatorcontrib><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>Hu, Yanfeng</creatorcontrib><creatorcontrib>Li, Tuanjie</creatorcontrib><creatorcontrib>Yu, Jiang</creatorcontrib><creatorcontrib>Zhou, Zhiwei</creatorcontrib><creatorcontrib>Xu, Yikai</creatorcontrib><creatorcontrib>Li, Guoxin</creatorcontrib><title>Radiomics signature of computed tomography imaging for prediction of survival and chemotherapeutic benefits in gastric cancer</title><title>EBioMedicine</title><addtitle>EBioMedicine</addtitle><description>To develop and validate a radiomics signature for the prediction of gastric cancer (GC) survival and chemotherapeutic benefits. In this multicenter retrospective analysis, we analyzed the radiomics features of portal venous-phase computed tomography in 1591 consecutive patients. A radiomics signature was generated by using the Lasso-Cox regression model in 228 patients and validated in internal and external validation cohorts. Radiomics nomograms integrating the radiomics signature were constructed, demonstrating the incremental value of the radiomics signature to the traditional staging system for individualized survival estimation. The performance of the nomograms was assessed with respect to calibration, discrimination, and clinical usefulness. The radiomics signature consisted of 19 selected features and was significantly associated with DFS (disease-free survival) and OS (overall survival). Multivariate analysis demonstrated that the radiomics signature was an independent prognostic factor. Incorporating the radiomics signature into the radiomics-based nomograms resulted in better performance for the estimation of DFS and OS than the clinicopathological nomograms and TNM staging system, with improved accuracy of the classification of survival outcomes. Further analysis showed that stage II and III patients with higher radiomics scores exhibited a favorable response to chemotherapy. In conclusion, the newly developed radiomics signature is a powerful predictor of DFS and OS, and it may predict which patients with stage II and III GC benefit from chemotherapy.</description><subject>Adult</subject><subject>Aged</subject><subject>Antineoplastic Combined Chemotherapy Protocols - therapeutic use</subject><subject>Biomarkers</subject><subject>Chemotherapy</subject><subject>Comorbidity</subject><subject>Female</subject><subject>Gastric cancer</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Neoplasm Grading</subject><subject>Neoplasm Staging</subject><subject>Prognosis</subject><subject>Radiomics signature</subject><subject>Reproducibility of Results</subject><subject>Research paper</subject><subject>ROC Curve</subject><subject>Stomach Neoplasms - diagnostic imaging</subject><subject>Stomach Neoplasms - drug therapy</subject><subject>Stomach Neoplasms - mortality</subject><subject>Tomography, X-Ray Computed - methods</subject><subject>Treatment Outcome</subject><issn>2352-3964</issn><issn>2352-3964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kUuLFDEUhYMozjDOLxAkSzdd5lGVVBYKMviCAUF0HVLJreo0VUmZpBpm4X83bY_DuHGVcHPOuTf3Q-glJQ0lVLw5NDD4uDSM0L4hqiFEPkGXjHdsx5Vonz66X6DrnA-EENq1tdg_RxecMNZyyi_Rr2_G1RxvM85-CqZsCXAcsY3LuhVwuMQlTsms-zvsFzP5MOExJrwmcN4WH8NJnbd09EczYxMctntYYtlDNcFWvMUDBBh9ydgHPJlcUq1ZEyykF-jZaOYM1_fnFfrx8cP3m8-726-fvty8v93ZjnVlJ1zrHOOKtNKKXhkmx06OQgoK4yC5EB3vJeMDM7Rjg-llT1ivpGDGWWk551fo3Tl33YYFnIVQkpn1muqX0p2Oxut_X4Lf6yketaBKSiVqwOv7gBR_bpCLXny2MM8mQNyyZpQozplo-yrlZ6lNMecE40MbSvSJnT7oP-z0iZ0mSld21fXq8YQPnr-kquDtWQB1T0cPSWfroS7R-QS2aBf9fxv8BviLrsQ</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Jiang, Yuming</creator><creator>Chen, Chuanli</creator><creator>Xie, Jingjing</creator><creator>Wang, Wei</creator><creator>Zha, Xuefan</creator><creator>Lv, Wenbing</creator><creator>Chen, Hao</creator><creator>Hu, Yanfeng</creator><creator>Li, Tuanjie</creator><creator>Yu, Jiang</creator><creator>Zhou, Zhiwei</creator><creator>Xu, Yikai</creator><creator>Li, Guoxin</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6184-3931</orcidid><orcidid>https://orcid.org/0000-0002-8583-8595</orcidid></search><sort><creationdate>20181001</creationdate><title>Radiomics signature of computed tomography imaging for prediction of survival and chemotherapeutic benefits in gastric cancer</title><author>Jiang, Yuming ; Chen, Chuanli ; Xie, Jingjing ; Wang, Wei ; Zha, Xuefan ; Lv, Wenbing ; Chen, Hao ; Hu, Yanfeng ; Li, Tuanjie ; Yu, Jiang ; Zhou, Zhiwei ; Xu, Yikai ; Li, Guoxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-6d4dd239047c689a27f57f6761efb7366538723b2a152ba8780289762adc7c333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Antineoplastic Combined Chemotherapy Protocols - therapeutic use</topic><topic>Biomarkers</topic><topic>Chemotherapy</topic><topic>Comorbidity</topic><topic>Female</topic><topic>Gastric cancer</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Neoplasm Grading</topic><topic>Neoplasm Staging</topic><topic>Prognosis</topic><topic>Radiomics signature</topic><topic>Reproducibility of Results</topic><topic>Research paper</topic><topic>ROC Curve</topic><topic>Stomach Neoplasms - diagnostic imaging</topic><topic>Stomach Neoplasms - drug therapy</topic><topic>Stomach Neoplasms - mortality</topic><topic>Tomography, X-Ray Computed - methods</topic><topic>Treatment Outcome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Yuming</creatorcontrib><creatorcontrib>Chen, Chuanli</creatorcontrib><creatorcontrib>Xie, Jingjing</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Zha, Xuefan</creatorcontrib><creatorcontrib>Lv, Wenbing</creatorcontrib><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>Hu, Yanfeng</creatorcontrib><creatorcontrib>Li, Tuanjie</creatorcontrib><creatorcontrib>Yu, Jiang</creatorcontrib><creatorcontrib>Zhou, Zhiwei</creatorcontrib><creatorcontrib>Xu, Yikai</creatorcontrib><creatorcontrib>Li, Guoxin</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>EBioMedicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Yuming</au><au>Chen, Chuanli</au><au>Xie, Jingjing</au><au>Wang, Wei</au><au>Zha, Xuefan</au><au>Lv, Wenbing</au><au>Chen, Hao</au><au>Hu, Yanfeng</au><au>Li, Tuanjie</au><au>Yu, Jiang</au><au>Zhou, Zhiwei</au><au>Xu, Yikai</au><au>Li, Guoxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radiomics signature of computed tomography imaging for prediction of survival and chemotherapeutic benefits in gastric cancer</atitle><jtitle>EBioMedicine</jtitle><addtitle>EBioMedicine</addtitle><date>2018-10-01</date><risdate>2018</risdate><volume>36</volume><spage>171</spage><epage>182</epage><pages>171-182</pages><issn>2352-3964</issn><eissn>2352-3964</eissn><abstract>To develop and validate a radiomics signature for the prediction of gastric cancer (GC) survival and chemotherapeutic benefits. In this multicenter retrospective analysis, we analyzed the radiomics features of portal venous-phase computed tomography in 1591 consecutive patients. A radiomics signature was generated by using the Lasso-Cox regression model in 228 patients and validated in internal and external validation cohorts. Radiomics nomograms integrating the radiomics signature were constructed, demonstrating the incremental value of the radiomics signature to the traditional staging system for individualized survival estimation. The performance of the nomograms was assessed with respect to calibration, discrimination, and clinical usefulness. The radiomics signature consisted of 19 selected features and was significantly associated with DFS (disease-free survival) and OS (overall survival). Multivariate analysis demonstrated that the radiomics signature was an independent prognostic factor. Incorporating the radiomics signature into the radiomics-based nomograms resulted in better performance for the estimation of DFS and OS than the clinicopathological nomograms and TNM staging system, with improved accuracy of the classification of survival outcomes. Further analysis showed that stage II and III patients with higher radiomics scores exhibited a favorable response to chemotherapy. In conclusion, the newly developed radiomics signature is a powerful predictor of DFS and OS, and it may predict which patients with stage II and III GC benefit from chemotherapy.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>30224313</pmid><doi>10.1016/j.ebiom.2018.09.007</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6184-3931</orcidid><orcidid>https://orcid.org/0000-0002-8583-8595</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2352-3964
ispartof EBioMedicine, 2018-10, Vol.36, p.171-182
issn 2352-3964
2352-3964
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6197796
source ScienceDirect Journals; PubMed Central
subjects Adult
Aged
Antineoplastic Combined Chemotherapy Protocols - therapeutic use
Biomarkers
Chemotherapy
Comorbidity
Female
Gastric cancer
Humans
Image Processing, Computer-Assisted
Male
Middle Aged
Neoplasm Grading
Neoplasm Staging
Prognosis
Radiomics signature
Reproducibility of Results
Research paper
ROC Curve
Stomach Neoplasms - diagnostic imaging
Stomach Neoplasms - drug therapy
Stomach Neoplasms - mortality
Tomography, X-Ray Computed - methods
Treatment Outcome
title Radiomics signature of computed tomography imaging for prediction of survival and chemotherapeutic benefits in gastric cancer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A56%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radiomics%20signature%20of%20computed%20tomography%20imaging%20for%20prediction%20of%20survival%20and%20chemotherapeutic%20benefits%20in%20gastric%20cancer&rft.jtitle=EBioMedicine&rft.au=Jiang,%20Yuming&rft.date=2018-10-01&rft.volume=36&rft.spage=171&rft.epage=182&rft.pages=171-182&rft.issn=2352-3964&rft.eissn=2352-3964&rft_id=info:doi/10.1016/j.ebiom.2018.09.007&rft_dat=%3Cproquest_pubme%3E2109332648%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c525t-6d4dd239047c689a27f57f6761efb7366538723b2a152ba8780289762adc7c333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2109332648&rft_id=info:pmid/30224313&rfr_iscdi=true