Loading…

Exploiting deep learning and volunteered geographic information for mapping buildings in Kano, Nigeria

Buildings in the developing world are inadequately mapped. Lack of such critical geospatial data adds unnecessary challenges to locating and reaching a large segment of the world’s most vulnerable population, impeding sustainability goals ranging from disaster relief to poverty reduction. Use of vol...

Full description

Saved in:
Bibliographic Details
Published in:Scientific data 2018-10, Vol.5 (1), p.180217-180217, Article 180217
Main Authors: Yuan, Jiangye, Roy Chowdhury, Pranab K., McKee, Jacob, Yang, Hsiuhan Lexie, Weaver, Jeanette, Bhaduri, Budhendra
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c551t-402528a0483f1dba1b0e8a3268d8ac88bd6774e7b06887d2092c70df63e764dc3
cites cdi_FETCH-LOGICAL-c551t-402528a0483f1dba1b0e8a3268d8ac88bd6774e7b06887d2092c70df63e764dc3
container_end_page 180217
container_issue 1
container_start_page 180217
container_title Scientific data
container_volume 5
creator Yuan, Jiangye
Roy Chowdhury, Pranab K.
McKee, Jacob
Yang, Hsiuhan Lexie
Weaver, Jeanette
Bhaduri, Budhendra
description Buildings in the developing world are inadequately mapped. Lack of such critical geospatial data adds unnecessary challenges to locating and reaching a large segment of the world’s most vulnerable population, impeding sustainability goals ranging from disaster relief to poverty reduction. Use of volunteered geographic information (VGI) has emerged as a widely accepted source to fill such voids. Despite its promise, availability of building maps for developing countries significantly lags behind demand. We present a new approach, coupling deep convolutional neural networks (CNNs) with VGI for automating building map generation from high-resolution satellite images for Kano state, Nigeria. Specifically, we trained a CNN with VGI building outlines of limited quality and quantity and generated building maps for a 50,000 km 2 area. Resulting maps are in strong agreement with existing settlement maps and require a fraction of the manual input needed for the latter. The VGI-based maps will provide support across multiple facets of socioeconomic development in Kano state, and demonstrates potential advancements in current mapping capabilities in resource constrained countries. Design Type(s) process-based data analysis objective • modeling and simulation objective Measurement Type(s) geographic location Technology Type(s) Neural networks models Factor Type(s) Sample Characteristic(s) Kano State • Yaounde • anthropogenic environment Machine-accessible metadata file describing the reported data (ISA-Tab format)
doi_str_mv 10.1038/sdata.2018.217
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6198754</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124114603</sourcerecordid><originalsourceid>FETCH-LOGICAL-c551t-402528a0483f1dba1b0e8a3268d8ac88bd6774e7b06887d2092c70df63e764dc3</originalsourceid><addsrcrecordid>eNp1kc1v1DAQxSMEolXplSOK4MKhux1_JPZekFBVCqKCC5wtx55kXSV2sJ0K_nsctpSCxMnPmt-8GftV1XMCWwJMniers95SIHJLiXhUHVNo6Ibzlj1-oI-q05RuAIAwDo2Ap9URA9YQupPHVX_5fR6Dy84PtUWc6xF19OtNe1vfhnHxGTGirQcMQ9Tz3pna-T7ESWcXfF1UPel5Xlu6xY22iFSI-qP24az-5AaMTj-rnvR6THh6d55UX99dfrl4v7n-fPXh4u31xjQNyRsOtKFSA5esJ7bTpAOUmtFWWqmNlJ1theAoOmilFJbCjhoBtm8ZipZbw06qNwffeekmtAZ9jnpUc3STjj9U0E79XfFur4Zwq1qyk6LhxeDlwSCk7FQyLqPZm-A9mqxIC4LuWIFe302J4duCKavJJYPjqD2GJSlKqKDAdmRFX_2D3oQl-vIHK8UJ4S2s1PZAmRhSitjfb0xArVGrX1GrNerSJ0rDi4fvvMd_B1uA8wOQSsmXDP7M_Y_lT_mItXE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124114603</pqid></control><display><type>article</type><title>Exploiting deep learning and volunteered geographic information for mapping buildings in Kano, Nigeria</title><source>PubMed Central - Free Access to All</source><source>Publicly Available Content Database</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Yuan, Jiangye ; Roy Chowdhury, Pranab K. ; McKee, Jacob ; Yang, Hsiuhan Lexie ; Weaver, Jeanette ; Bhaduri, Budhendra</creator><creatorcontrib>Yuan, Jiangye ; Roy Chowdhury, Pranab K. ; McKee, Jacob ; Yang, Hsiuhan Lexie ; Weaver, Jeanette ; Bhaduri, Budhendra ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Buildings in the developing world are inadequately mapped. Lack of such critical geospatial data adds unnecessary challenges to locating and reaching a large segment of the world’s most vulnerable population, impeding sustainability goals ranging from disaster relief to poverty reduction. Use of volunteered geographic information (VGI) has emerged as a widely accepted source to fill such voids. Despite its promise, availability of building maps for developing countries significantly lags behind demand. We present a new approach, coupling deep convolutional neural networks (CNNs) with VGI for automating building map generation from high-resolution satellite images for Kano state, Nigeria. Specifically, we trained a CNN with VGI building outlines of limited quality and quantity and generated building maps for a 50,000 km 2 area. Resulting maps are in strong agreement with existing settlement maps and require a fraction of the manual input needed for the latter. The VGI-based maps will provide support across multiple facets of socioeconomic development in Kano state, and demonstrates potential advancements in current mapping capabilities in resource constrained countries. Design Type(s) process-based data analysis objective • modeling and simulation objective Measurement Type(s) geographic location Technology Type(s) Neural networks models Factor Type(s) Sample Characteristic(s) Kano State • Yaounde • anthropogenic environment Machine-accessible metadata file describing the reported data (ISA-Tab format)</description><identifier>ISSN: 2052-4463</identifier><identifier>EISSN: 2052-4463</identifier><identifier>DOI: 10.1038/sdata.2018.217</identifier><identifier>PMID: 30351298</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>706/134 ; 706/2808 ; 706/648/697/129 ; Data Descriptor ; Developing countries ; Developing world ; GENERAL AND MISCELLANEOUS ; Geography ; Humanities and Social Sciences ; LDCs ; Mapping ; multidisciplinary ; Neural networks ; Science</subject><ispartof>Scientific data, 2018-10, Vol.5 (1), p.180217-180217, Article 180217</ispartof><rights>This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2018</rights><rights>Copyright Nature Publishing Group Oct 2018</rights><rights>Copyright © 2018, This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2018 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c551t-402528a0483f1dba1b0e8a3268d8ac88bd6774e7b06887d2092c70df63e764dc3</citedby><cites>FETCH-LOGICAL-c551t-402528a0483f1dba1b0e8a3268d8ac88bd6774e7b06887d2092c70df63e764dc3</cites><orcidid>0000-0003-0205-8698 ; 0000000302058698 ; 0000000185519925 ; 0000000338125346 ; 000000027572050X ; 0000000315551377 ; 0000000322526778</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2124114603/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2124114603?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30351298$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1607293$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yuan, Jiangye</creatorcontrib><creatorcontrib>Roy Chowdhury, Pranab K.</creatorcontrib><creatorcontrib>McKee, Jacob</creatorcontrib><creatorcontrib>Yang, Hsiuhan Lexie</creatorcontrib><creatorcontrib>Weaver, Jeanette</creatorcontrib><creatorcontrib>Bhaduri, Budhendra</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Exploiting deep learning and volunteered geographic information for mapping buildings in Kano, Nigeria</title><title>Scientific data</title><addtitle>Sci Data</addtitle><addtitle>Sci Data</addtitle><description>Buildings in the developing world are inadequately mapped. Lack of such critical geospatial data adds unnecessary challenges to locating and reaching a large segment of the world’s most vulnerable population, impeding sustainability goals ranging from disaster relief to poverty reduction. Use of volunteered geographic information (VGI) has emerged as a widely accepted source to fill such voids. Despite its promise, availability of building maps for developing countries significantly lags behind demand. We present a new approach, coupling deep convolutional neural networks (CNNs) with VGI for automating building map generation from high-resolution satellite images for Kano state, Nigeria. Specifically, we trained a CNN with VGI building outlines of limited quality and quantity and generated building maps for a 50,000 km 2 area. Resulting maps are in strong agreement with existing settlement maps and require a fraction of the manual input needed for the latter. The VGI-based maps will provide support across multiple facets of socioeconomic development in Kano state, and demonstrates potential advancements in current mapping capabilities in resource constrained countries. Design Type(s) process-based data analysis objective • modeling and simulation objective Measurement Type(s) geographic location Technology Type(s) Neural networks models Factor Type(s) Sample Characteristic(s) Kano State • Yaounde • anthropogenic environment Machine-accessible metadata file describing the reported data (ISA-Tab format)</description><subject>706/134</subject><subject>706/2808</subject><subject>706/648/697/129</subject><subject>Data Descriptor</subject><subject>Developing countries</subject><subject>Developing world</subject><subject>GENERAL AND MISCELLANEOUS</subject><subject>Geography</subject><subject>Humanities and Social Sciences</subject><subject>LDCs</subject><subject>Mapping</subject><subject>multidisciplinary</subject><subject>Neural networks</subject><subject>Science</subject><issn>2052-4463</issn><issn>2052-4463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp1kc1v1DAQxSMEolXplSOK4MKhux1_JPZekFBVCqKCC5wtx55kXSV2sJ0K_nsctpSCxMnPmt-8GftV1XMCWwJMniers95SIHJLiXhUHVNo6Ibzlj1-oI-q05RuAIAwDo2Ap9URA9YQupPHVX_5fR6Dy84PtUWc6xF19OtNe1vfhnHxGTGirQcMQ9Tz3pna-T7ESWcXfF1UPel5Xlu6xY22iFSI-qP24az-5AaMTj-rnvR6THh6d55UX99dfrl4v7n-fPXh4u31xjQNyRsOtKFSA5esJ7bTpAOUmtFWWqmNlJ1theAoOmilFJbCjhoBtm8ZipZbw06qNwffeekmtAZ9jnpUc3STjj9U0E79XfFur4Zwq1qyk6LhxeDlwSCk7FQyLqPZm-A9mqxIC4LuWIFe302J4duCKavJJYPjqD2GJSlKqKDAdmRFX_2D3oQl-vIHK8UJ4S2s1PZAmRhSitjfb0xArVGrX1GrNerSJ0rDi4fvvMd_B1uA8wOQSsmXDP7M_Y_lT_mItXE</recordid><startdate>20181023</startdate><enddate>20181023</enddate><creator>Yuan, Jiangye</creator><creator>Roy Chowdhury, Pranab K.</creator><creator>McKee, Jacob</creator><creator>Yang, Hsiuhan Lexie</creator><creator>Weaver, Jeanette</creator><creator>Bhaduri, Budhendra</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0205-8698</orcidid><orcidid>https://orcid.org/0000000302058698</orcidid><orcidid>https://orcid.org/0000000185519925</orcidid><orcidid>https://orcid.org/0000000338125346</orcidid><orcidid>https://orcid.org/000000027572050X</orcidid><orcidid>https://orcid.org/0000000315551377</orcidid><orcidid>https://orcid.org/0000000322526778</orcidid></search><sort><creationdate>20181023</creationdate><title>Exploiting deep learning and volunteered geographic information for mapping buildings in Kano, Nigeria</title><author>Yuan, Jiangye ; Roy Chowdhury, Pranab K. ; McKee, Jacob ; Yang, Hsiuhan Lexie ; Weaver, Jeanette ; Bhaduri, Budhendra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c551t-402528a0483f1dba1b0e8a3268d8ac88bd6774e7b06887d2092c70df63e764dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>706/134</topic><topic>706/2808</topic><topic>706/648/697/129</topic><topic>Data Descriptor</topic><topic>Developing countries</topic><topic>Developing world</topic><topic>GENERAL AND MISCELLANEOUS</topic><topic>Geography</topic><topic>Humanities and Social Sciences</topic><topic>LDCs</topic><topic>Mapping</topic><topic>multidisciplinary</topic><topic>Neural networks</topic><topic>Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Jiangye</creatorcontrib><creatorcontrib>Roy Chowdhury, Pranab K.</creatorcontrib><creatorcontrib>McKee, Jacob</creatorcontrib><creatorcontrib>Yang, Hsiuhan Lexie</creatorcontrib><creatorcontrib>Weaver, Jeanette</creatorcontrib><creatorcontrib>Bhaduri, Budhendra</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific data</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Jiangye</au><au>Roy Chowdhury, Pranab K.</au><au>McKee, Jacob</au><au>Yang, Hsiuhan Lexie</au><au>Weaver, Jeanette</au><au>Bhaduri, Budhendra</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploiting deep learning and volunteered geographic information for mapping buildings in Kano, Nigeria</atitle><jtitle>Scientific data</jtitle><stitle>Sci Data</stitle><addtitle>Sci Data</addtitle><date>2018-10-23</date><risdate>2018</risdate><volume>5</volume><issue>1</issue><spage>180217</spage><epage>180217</epage><pages>180217-180217</pages><artnum>180217</artnum><issn>2052-4463</issn><eissn>2052-4463</eissn><abstract>Buildings in the developing world are inadequately mapped. Lack of such critical geospatial data adds unnecessary challenges to locating and reaching a large segment of the world’s most vulnerable population, impeding sustainability goals ranging from disaster relief to poverty reduction. Use of volunteered geographic information (VGI) has emerged as a widely accepted source to fill such voids. Despite its promise, availability of building maps for developing countries significantly lags behind demand. We present a new approach, coupling deep convolutional neural networks (CNNs) with VGI for automating building map generation from high-resolution satellite images for Kano state, Nigeria. Specifically, we trained a CNN with VGI building outlines of limited quality and quantity and generated building maps for a 50,000 km 2 area. Resulting maps are in strong agreement with existing settlement maps and require a fraction of the manual input needed for the latter. The VGI-based maps will provide support across multiple facets of socioeconomic development in Kano state, and demonstrates potential advancements in current mapping capabilities in resource constrained countries. Design Type(s) process-based data analysis objective • modeling and simulation objective Measurement Type(s) geographic location Technology Type(s) Neural networks models Factor Type(s) Sample Characteristic(s) Kano State • Yaounde • anthropogenic environment Machine-accessible metadata file describing the reported data (ISA-Tab format)</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30351298</pmid><doi>10.1038/sdata.2018.217</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0205-8698</orcidid><orcidid>https://orcid.org/0000000302058698</orcidid><orcidid>https://orcid.org/0000000185519925</orcidid><orcidid>https://orcid.org/0000000338125346</orcidid><orcidid>https://orcid.org/000000027572050X</orcidid><orcidid>https://orcid.org/0000000315551377</orcidid><orcidid>https://orcid.org/0000000322526778</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2052-4463
ispartof Scientific data, 2018-10, Vol.5 (1), p.180217-180217, Article 180217
issn 2052-4463
2052-4463
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6198754
source PubMed Central - Free Access to All; Publicly Available Content Database; Springer Nature - nature.com Journals - Fully Open Access
subjects 706/134
706/2808
706/648/697/129
Data Descriptor
Developing countries
Developing world
GENERAL AND MISCELLANEOUS
Geography
Humanities and Social Sciences
LDCs
Mapping
multidisciplinary
Neural networks
Science
title Exploiting deep learning and volunteered geographic information for mapping buildings in Kano, Nigeria
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T15%3A57%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploiting%20deep%20learning%20and%20volunteered%20geographic%20information%20for%20mapping%20buildings%20in%20Kano,%20Nigeria&rft.jtitle=Scientific%20data&rft.au=Yuan,%20Jiangye&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2018-10-23&rft.volume=5&rft.issue=1&rft.spage=180217&rft.epage=180217&rft.pages=180217-180217&rft.artnum=180217&rft.issn=2052-4463&rft.eissn=2052-4463&rft_id=info:doi/10.1038/sdata.2018.217&rft_dat=%3Cproquest_pubme%3E2124114603%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c551t-402528a0483f1dba1b0e8a3268d8ac88bd6774e7b06887d2092c70df63e764dc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2124114603&rft_id=info:pmid/30351298&rfr_iscdi=true