Loading…
Novel Self-Assembled Micelles Based on Cholesterol-Modified Antimicrobial Peptide (DP7) for Safe and Effective Systemic Administration in Animal Models of Bacterial Infection
Owing to their broad-spectrum antibacterial properties, multitarget effects, and low drug resistance, antimicrobial peptides (AMPs) have played critical roles in the clinical therapy of drug-resistant bacterial infections. However, the potential hazard of hemolysis following systemic administration...
Saved in:
Published in: | Antimicrobial agents and chemotherapy 2018-11, Vol.62 (11) |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Owing to their broad-spectrum antibacterial properties, multitarget effects, and low drug resistance, antimicrobial peptides (AMPs) have played critical roles in the clinical therapy of drug-resistant bacterial infections. However, the potential hazard of hemolysis following systemic administration has greatly limited their application. Here, we developed a novel AMP derivative, DP7-C, by modifying a formerly identified highly active AMP (DP7) with cholesterol to form an amphiphilic conjugate. The prepared DP7-C easily self-assembled into stable nanomicelles in aqueous solution. The DP7-C micelles showed lower hemolytic activity than their unconjugated counterparts toward human red blood cells and a maximum tolerated dose of 80 mg/kg of body weight in mice via intravenous injection, thus demonstrating improved safety. Moreover, by eliciting specific immunomodulatory activities in immune cells, the DP7-C micelles exerted distinct therapeutic effects in zebrafish and mouse models of infection. In conclusion, DP7-C micelles may be an excellent candidate for the treatment of bacterial infections in the clinic. |
---|---|
ISSN: | 0066-4804 1098-6596 |
DOI: | 10.1128/AAC.00368-18 |