Loading…
Characterization of membrane-bound sulfane reductase: A missing link in the evolution of modern day respiratory complexes
Hyperthermophilic archaea contain a hydrogen gas–evolving,respiratory membrane–bound NiFe-hydrogenase (MBH) that is very closely related to the aerobic respiratory complex I. During growth on elemental sulfur (S°), these microorganisms also produce a homologous membrane-bound complex (MBX), which ge...
Saved in:
Published in: | The Journal of biological chemistry 2018-10, Vol.293 (43), p.16687-16696 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c521t-b3fccb8c71e6454dd1986145049a903449bc0fc9e7d5476cc2d2cd07a02778663 |
---|---|
cites | cdi_FETCH-LOGICAL-c521t-b3fccb8c71e6454dd1986145049a903449bc0fc9e7d5476cc2d2cd07a02778663 |
container_end_page | 16696 |
container_issue | 43 |
container_start_page | 16687 |
container_title | The Journal of biological chemistry |
container_volume | 293 |
creator | Wu, Chang-Hao Schut, Gerrit J. Poole, Farris L. Haja, Dominik K. Adams, Michael W.W. |
description | Hyperthermophilic archaea contain a hydrogen gas–evolving,respiratory membrane–bound NiFe-hydrogenase (MBH) that is very closely related to the aerobic respiratory complex I. During growth on elemental sulfur (S°), these microorganisms also produce a homologous membrane-bound complex (MBX), which generates H2S. MBX evolutionarily links MBH to complex I, but its catalytic function is unknown. Herein, we show that MBX reduces the sulfane sulfur of polysulfides by using ferredoxin (Fd) as the electron donor, and we rename it membrane-bound sulfane reductase (MBS). Two forms of affinity-tagged MBS were purified from genetically engineered Pyrococcus furiosus (a hyperthermophilic archaea species): the 13-subunit holoenzyme (S-MBS) and a cytoplasmic 4-subunit catalytic subcomplex (C-MBS). S-MBS and C-MBS reduced dimethyl trisulfide (DMTS) with comparable Km (∼490 μm) and Vmax values (12 μmol/min/mg). The MBS catalytic subunit (MbsL), but not that of complex I (NuoD), retains two of four NiFe-coordinating cysteine residues of MBH. However, these cysteine residues were not involved in MBS catalysis because a mutant P. furiosus strain (MbsLC85A/C385A) grew normally with S°. The products of the DMTS reduction and properties of polysulfides indicated that in the physiological reaction, MBS uses Fd (Eo′ = −480 mV) to reduce sulfane sulfur (Eo′ −260 mV) and cleave organic (RSnR, n ≥ 3) and anionic polysulfides (Sn2−, n ≥ 4) but that it does not produce H2S. Based on homology to MBH, MBS also creates an ion gradient for ATP synthesis. This work establishes the electrochemical reaction catalyzed by MBS that is intermediate in the evolution from proton- to quinone-reducing respiratory complexes. |
doi_str_mv | 10.1074/jbc.RA118.005092 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6204914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820332336</els_id><sourcerecordid>2099896107</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-b3fccb8c71e6454dd1986145049a903449bc0fc9e7d5476cc2d2cd07a02778663</originalsourceid><addsrcrecordid>eNp1UU2LFDEUDKK44-rdkwRPe-kxSX9mD8Iw-AULgih4C-mX1ztZu5MxSQ-Ov96MvQ56MJcQUlWvXhUhzzlbc9ZWr-56WH_acN6tGauZFA_IirOuLMqaf31IVowJXkhRdxfkSYx3LJ9K8sfkomS844K3K3Lc7nTQkDDYnzpZ76gf6IRTH7TDovezMzTO45BfNKCZIemI13RDJxujdbd0tO4btY6mHVI8-HE-i3iDwVGjj5kY9zbo5MORgp_2I_7A-JQ8GvQY8dn9fUm-vH3zefu-uPn47sN2c1NALXgq-nIA6DtoOTZVXRnDZdfwqs6baMnKqpI9sAEktqau2gZAGAGGtZqJtu2aprwkrxfd_dxPaABdCnpU-2AnHY7Ka6v-_XF2p279QTXilFaVBV4uAj4mqyLYhLAD7xxCUjx7adhpytX9lOC_zxiTygEBjmMOzs9RCSZlJ5vcWoayBQrBxxhwOHvhTJ1qVblW9btWtdSaKS_-3uFM-NNjBlwvAMxJHiyGk090gMaGk03j7f_VfwFQzbSR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2099896107</pqid></control><display><type>article</type><title>Characterization of membrane-bound sulfane reductase: A missing link in the evolution of modern day respiratory complexes</title><source>Elsevier ScienceDirect Journals</source><source>PubMed Central</source><creator>Wu, Chang-Hao ; Schut, Gerrit J. ; Poole, Farris L. ; Haja, Dominik K. ; Adams, Michael W.W.</creator><creatorcontrib>Wu, Chang-Hao ; Schut, Gerrit J. ; Poole, Farris L. ; Haja, Dominik K. ; Adams, Michael W.W. ; Univ. of Georgia, Athens, GA (United States)</creatorcontrib><description>Hyperthermophilic archaea contain a hydrogen gas–evolving,respiratory membrane–bound NiFe-hydrogenase (MBH) that is very closely related to the aerobic respiratory complex I. During growth on elemental sulfur (S°), these microorganisms also produce a homologous membrane-bound complex (MBX), which generates H2S. MBX evolutionarily links MBH to complex I, but its catalytic function is unknown. Herein, we show that MBX reduces the sulfane sulfur of polysulfides by using ferredoxin (Fd) as the electron donor, and we rename it membrane-bound sulfane reductase (MBS). Two forms of affinity-tagged MBS were purified from genetically engineered Pyrococcus furiosus (a hyperthermophilic archaea species): the 13-subunit holoenzyme (S-MBS) and a cytoplasmic 4-subunit catalytic subcomplex (C-MBS). S-MBS and C-MBS reduced dimethyl trisulfide (DMTS) with comparable Km (∼490 μm) and Vmax values (12 μmol/min/mg). The MBS catalytic subunit (MbsL), but not that of complex I (NuoD), retains two of four NiFe-coordinating cysteine residues of MBH. However, these cysteine residues were not involved in MBS catalysis because a mutant P. furiosus strain (MbsLC85A/C385A) grew normally with S°. The products of the DMTS reduction and properties of polysulfides indicated that in the physiological reaction, MBS uses Fd (Eo′ = −480 mV) to reduce sulfane sulfur (Eo′ −260 mV) and cleave organic (RSnR, n ≥ 3) and anionic polysulfides (Sn2−, n ≥ 4) but that it does not produce H2S. Based on homology to MBH, MBS also creates an ion gradient for ATP synthesis. This work establishes the electrochemical reaction catalyzed by MBS that is intermediate in the evolution from proton- to quinone-reducing respiratory complexes.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.RA118.005092</identifier><identifier>PMID: 30181217</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Archaea ; archaea hydrogenase ; Archaeal Proteins - genetics ; Archaeal Proteins - metabolism ; BASIC BIOLOGICAL SCIENCES ; Biochemistry & Molecular Biology ; Bioenergetics ; Catalytic Domain ; Cell Membrane - metabolism ; Complex ; Complex I ; Electron Transport Complex I - genetics ; Electron Transport Complex I - metabolism ; evolution ; hydrogen sulfide ; hydrogenase ; membrane energetics ; membrane enzyme ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Oxidation-Reduction ; oxidation-reduction (redox) ; Oxidoreductases - genetics ; Oxidoreductases - metabolism ; protein purification ; Pyrococcus furiosus - enzymology ; Pyrococcus furiosus - growth & development ; respiration ; respiratory complex ; Sulfides - chemistry ; sulfur</subject><ispartof>The Journal of biological chemistry, 2018-10, Vol.293 (43), p.16687-16696</ispartof><rights>2018 © 2018 Wu et al.</rights><rights>2018 Wu et al.</rights><rights>2018 Wu et al. 2018 Wu et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-b3fccb8c71e6454dd1986145049a903449bc0fc9e7d5476cc2d2cd07a02778663</citedby><cites>FETCH-LOGICAL-c521t-b3fccb8c71e6454dd1986145049a903449bc0fc9e7d5476cc2d2cd07a02778663</cites><orcidid>0000-0002-9796-5014 ; 0000000297965014</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6204914/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925820332336$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30181217$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1614606$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Chang-Hao</creatorcontrib><creatorcontrib>Schut, Gerrit J.</creatorcontrib><creatorcontrib>Poole, Farris L.</creatorcontrib><creatorcontrib>Haja, Dominik K.</creatorcontrib><creatorcontrib>Adams, Michael W.W.</creatorcontrib><creatorcontrib>Univ. of Georgia, Athens, GA (United States)</creatorcontrib><title>Characterization of membrane-bound sulfane reductase: A missing link in the evolution of modern day respiratory complexes</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Hyperthermophilic archaea contain a hydrogen gas–evolving,respiratory membrane–bound NiFe-hydrogenase (MBH) that is very closely related to the aerobic respiratory complex I. During growth on elemental sulfur (S°), these microorganisms also produce a homologous membrane-bound complex (MBX), which generates H2S. MBX evolutionarily links MBH to complex I, but its catalytic function is unknown. Herein, we show that MBX reduces the sulfane sulfur of polysulfides by using ferredoxin (Fd) as the electron donor, and we rename it membrane-bound sulfane reductase (MBS). Two forms of affinity-tagged MBS were purified from genetically engineered Pyrococcus furiosus (a hyperthermophilic archaea species): the 13-subunit holoenzyme (S-MBS) and a cytoplasmic 4-subunit catalytic subcomplex (C-MBS). S-MBS and C-MBS reduced dimethyl trisulfide (DMTS) with comparable Km (∼490 μm) and Vmax values (12 μmol/min/mg). The MBS catalytic subunit (MbsL), but not that of complex I (NuoD), retains two of four NiFe-coordinating cysteine residues of MBH. However, these cysteine residues were not involved in MBS catalysis because a mutant P. furiosus strain (MbsLC85A/C385A) grew normally with S°. The products of the DMTS reduction and properties of polysulfides indicated that in the physiological reaction, MBS uses Fd (Eo′ = −480 mV) to reduce sulfane sulfur (Eo′ −260 mV) and cleave organic (RSnR, n ≥ 3) and anionic polysulfides (Sn2−, n ≥ 4) but that it does not produce H2S. Based on homology to MBH, MBS also creates an ion gradient for ATP synthesis. This work establishes the electrochemical reaction catalyzed by MBS that is intermediate in the evolution from proton- to quinone-reducing respiratory complexes.</description><subject>Archaea</subject><subject>archaea hydrogenase</subject><subject>Archaeal Proteins - genetics</subject><subject>Archaeal Proteins - metabolism</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biochemistry & Molecular Biology</subject><subject>Bioenergetics</subject><subject>Catalytic Domain</subject><subject>Cell Membrane - metabolism</subject><subject>Complex</subject><subject>Complex I</subject><subject>Electron Transport Complex I - genetics</subject><subject>Electron Transport Complex I - metabolism</subject><subject>evolution</subject><subject>hydrogen sulfide</subject><subject>hydrogenase</subject><subject>membrane energetics</subject><subject>membrane enzyme</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Oxidation-Reduction</subject><subject>oxidation-reduction (redox)</subject><subject>Oxidoreductases - genetics</subject><subject>Oxidoreductases - metabolism</subject><subject>protein purification</subject><subject>Pyrococcus furiosus - enzymology</subject><subject>Pyrococcus furiosus - growth & development</subject><subject>respiration</subject><subject>respiratory complex</subject><subject>Sulfides - chemistry</subject><subject>sulfur</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1UU2LFDEUDKK44-rdkwRPe-kxSX9mD8Iw-AULgih4C-mX1ztZu5MxSQ-Ov96MvQ56MJcQUlWvXhUhzzlbc9ZWr-56WH_acN6tGauZFA_IirOuLMqaf31IVowJXkhRdxfkSYx3LJ9K8sfkomS844K3K3Lc7nTQkDDYnzpZ76gf6IRTH7TDovezMzTO45BfNKCZIemI13RDJxujdbd0tO4btY6mHVI8-HE-i3iDwVGjj5kY9zbo5MORgp_2I_7A-JQ8GvQY8dn9fUm-vH3zefu-uPn47sN2c1NALXgq-nIA6DtoOTZVXRnDZdfwqs6baMnKqpI9sAEktqau2gZAGAGGtZqJtu2aprwkrxfd_dxPaABdCnpU-2AnHY7Ka6v-_XF2p279QTXilFaVBV4uAj4mqyLYhLAD7xxCUjx7adhpytX9lOC_zxiTygEBjmMOzs9RCSZlJ5vcWoayBQrBxxhwOHvhTJ1qVblW9btWtdSaKS_-3uFM-NNjBlwvAMxJHiyGk090gMaGk03j7f_VfwFQzbSR</recordid><startdate>20181026</startdate><enddate>20181026</enddate><creator>Wu, Chang-Hao</creator><creator>Schut, Gerrit J.</creator><creator>Poole, Farris L.</creator><creator>Haja, Dominik K.</creator><creator>Adams, Michael W.W.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9796-5014</orcidid><orcidid>https://orcid.org/0000000297965014</orcidid></search><sort><creationdate>20181026</creationdate><title>Characterization of membrane-bound sulfane reductase: A missing link in the evolution of modern day respiratory complexes</title><author>Wu, Chang-Hao ; Schut, Gerrit J. ; Poole, Farris L. ; Haja, Dominik K. ; Adams, Michael W.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-b3fccb8c71e6454dd1986145049a903449bc0fc9e7d5476cc2d2cd07a02778663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Archaea</topic><topic>archaea hydrogenase</topic><topic>Archaeal Proteins - genetics</topic><topic>Archaeal Proteins - metabolism</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biochemistry & Molecular Biology</topic><topic>Bioenergetics</topic><topic>Catalytic Domain</topic><topic>Cell Membrane - metabolism</topic><topic>Complex</topic><topic>Complex I</topic><topic>Electron Transport Complex I - genetics</topic><topic>Electron Transport Complex I - metabolism</topic><topic>evolution</topic><topic>hydrogen sulfide</topic><topic>hydrogenase</topic><topic>membrane energetics</topic><topic>membrane enzyme</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Oxidation-Reduction</topic><topic>oxidation-reduction (redox)</topic><topic>Oxidoreductases - genetics</topic><topic>Oxidoreductases - metabolism</topic><topic>protein purification</topic><topic>Pyrococcus furiosus - enzymology</topic><topic>Pyrococcus furiosus - growth & development</topic><topic>respiration</topic><topic>respiratory complex</topic><topic>Sulfides - chemistry</topic><topic>sulfur</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Chang-Hao</creatorcontrib><creatorcontrib>Schut, Gerrit J.</creatorcontrib><creatorcontrib>Poole, Farris L.</creatorcontrib><creatorcontrib>Haja, Dominik K.</creatorcontrib><creatorcontrib>Adams, Michael W.W.</creatorcontrib><creatorcontrib>Univ. of Georgia, Athens, GA (United States)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Chang-Hao</au><au>Schut, Gerrit J.</au><au>Poole, Farris L.</au><au>Haja, Dominik K.</au><au>Adams, Michael W.W.</au><aucorp>Univ. of Georgia, Athens, GA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of membrane-bound sulfane reductase: A missing link in the evolution of modern day respiratory complexes</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2018-10-26</date><risdate>2018</risdate><volume>293</volume><issue>43</issue><spage>16687</spage><epage>16696</epage><pages>16687-16696</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Hyperthermophilic archaea contain a hydrogen gas–evolving,respiratory membrane–bound NiFe-hydrogenase (MBH) that is very closely related to the aerobic respiratory complex I. During growth on elemental sulfur (S°), these microorganisms also produce a homologous membrane-bound complex (MBX), which generates H2S. MBX evolutionarily links MBH to complex I, but its catalytic function is unknown. Herein, we show that MBX reduces the sulfane sulfur of polysulfides by using ferredoxin (Fd) as the electron donor, and we rename it membrane-bound sulfane reductase (MBS). Two forms of affinity-tagged MBS were purified from genetically engineered Pyrococcus furiosus (a hyperthermophilic archaea species): the 13-subunit holoenzyme (S-MBS) and a cytoplasmic 4-subunit catalytic subcomplex (C-MBS). S-MBS and C-MBS reduced dimethyl trisulfide (DMTS) with comparable Km (∼490 μm) and Vmax values (12 μmol/min/mg). The MBS catalytic subunit (MbsL), but not that of complex I (NuoD), retains two of four NiFe-coordinating cysteine residues of MBH. However, these cysteine residues were not involved in MBS catalysis because a mutant P. furiosus strain (MbsLC85A/C385A) grew normally with S°. The products of the DMTS reduction and properties of polysulfides indicated that in the physiological reaction, MBS uses Fd (Eo′ = −480 mV) to reduce sulfane sulfur (Eo′ −260 mV) and cleave organic (RSnR, n ≥ 3) and anionic polysulfides (Sn2−, n ≥ 4) but that it does not produce H2S. Based on homology to MBH, MBS also creates an ion gradient for ATP synthesis. This work establishes the electrochemical reaction catalyzed by MBS that is intermediate in the evolution from proton- to quinone-reducing respiratory complexes.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30181217</pmid><doi>10.1074/jbc.RA118.005092</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9796-5014</orcidid><orcidid>https://orcid.org/0000000297965014</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2018-10, Vol.293 (43), p.16687-16696 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6204914 |
source | Elsevier ScienceDirect Journals; PubMed Central |
subjects | Archaea archaea hydrogenase Archaeal Proteins - genetics Archaeal Proteins - metabolism BASIC BIOLOGICAL SCIENCES Biochemistry & Molecular Biology Bioenergetics Catalytic Domain Cell Membrane - metabolism Complex Complex I Electron Transport Complex I - genetics Electron Transport Complex I - metabolism evolution hydrogen sulfide hydrogenase membrane energetics membrane enzyme Membrane Proteins - genetics Membrane Proteins - metabolism Oxidation-Reduction oxidation-reduction (redox) Oxidoreductases - genetics Oxidoreductases - metabolism protein purification Pyrococcus furiosus - enzymology Pyrococcus furiosus - growth & development respiration respiratory complex Sulfides - chemistry sulfur |
title | Characterization of membrane-bound sulfane reductase: A missing link in the evolution of modern day respiratory complexes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A46%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20membrane-bound%20sulfane%20reductase:%20A%20missing%20link%20in%20the%20evolution%20of%20modern%20day%20respiratory%20complexes&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Wu,%20Chang-Hao&rft.aucorp=Univ.%20of%20Georgia,%20Athens,%20GA%20(United%20States)&rft.date=2018-10-26&rft.volume=293&rft.issue=43&rft.spage=16687&rft.epage=16696&rft.pages=16687-16696&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.RA118.005092&rft_dat=%3Cproquest_pubme%3E2099896107%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c521t-b3fccb8c71e6454dd1986145049a903449bc0fc9e7d5476cc2d2cd07a02778663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2099896107&rft_id=info:pmid/30181217&rfr_iscdi=true |