Loading…

Characterization of membrane-bound sulfane reductase: A missing link in the evolution of modern day respiratory complexes

Hyperthermophilic archaea contain a hydrogen gas–evolving,respiratory membrane–bound NiFe-hydrogenase (MBH) that is very closely related to the aerobic respiratory complex I. During growth on elemental sulfur (S°), these microorganisms also produce a homologous membrane-bound complex (MBX), which ge...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2018-10, Vol.293 (43), p.16687-16696
Main Authors: Wu, Chang-Hao, Schut, Gerrit J., Poole, Farris L., Haja, Dominik K., Adams, Michael W.W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c521t-b3fccb8c71e6454dd1986145049a903449bc0fc9e7d5476cc2d2cd07a02778663
cites cdi_FETCH-LOGICAL-c521t-b3fccb8c71e6454dd1986145049a903449bc0fc9e7d5476cc2d2cd07a02778663
container_end_page 16696
container_issue 43
container_start_page 16687
container_title The Journal of biological chemistry
container_volume 293
creator Wu, Chang-Hao
Schut, Gerrit J.
Poole, Farris L.
Haja, Dominik K.
Adams, Michael W.W.
description Hyperthermophilic archaea contain a hydrogen gas–evolving,respiratory membrane–bound NiFe-hydrogenase (MBH) that is very closely related to the aerobic respiratory complex I. During growth on elemental sulfur (S°), these microorganisms also produce a homologous membrane-bound complex (MBX), which generates H2S. MBX evolutionarily links MBH to complex I, but its catalytic function is unknown. Herein, we show that MBX reduces the sulfane sulfur of polysulfides by using ferredoxin (Fd) as the electron donor, and we rename it membrane-bound sulfane reductase (MBS). Two forms of affinity-tagged MBS were purified from genetically engineered Pyrococcus furiosus (a hyperthermophilic archaea species): the 13-subunit holoenzyme (S-MBS) and a cytoplasmic 4-subunit catalytic subcomplex (C-MBS). S-MBS and C-MBS reduced dimethyl trisulfide (DMTS) with comparable Km (∼490 μm) and Vmax values (12 μmol/min/mg). The MBS catalytic subunit (MbsL), but not that of complex I (NuoD), retains two of four NiFe-coordinating cysteine residues of MBH. However, these cysteine residues were not involved in MBS catalysis because a mutant P. furiosus strain (MbsLC85A/C385A) grew normally with S°. The products of the DMTS reduction and properties of polysulfides indicated that in the physiological reaction, MBS uses Fd (Eo′ = −480 mV) to reduce sulfane sulfur (Eo′ −260 mV) and cleave organic (RSnR, n ≥ 3) and anionic polysulfides (Sn2−, n ≥ 4) but that it does not produce H2S. Based on homology to MBH, MBS also creates an ion gradient for ATP synthesis. This work establishes the electrochemical reaction catalyzed by MBS that is intermediate in the evolution from proton- to quinone-reducing respiratory complexes.
doi_str_mv 10.1074/jbc.RA118.005092
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6204914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820332336</els_id><sourcerecordid>2099896107</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-b3fccb8c71e6454dd1986145049a903449bc0fc9e7d5476cc2d2cd07a02778663</originalsourceid><addsrcrecordid>eNp1UU2LFDEUDKK44-rdkwRPe-kxSX9mD8Iw-AULgih4C-mX1ztZu5MxSQ-Ov96MvQ56MJcQUlWvXhUhzzlbc9ZWr-56WH_acN6tGauZFA_IirOuLMqaf31IVowJXkhRdxfkSYx3LJ9K8sfkomS844K3K3Lc7nTQkDDYnzpZ76gf6IRTH7TDovezMzTO45BfNKCZIemI13RDJxujdbd0tO4btY6mHVI8-HE-i3iDwVGjj5kY9zbo5MORgp_2I_7A-JQ8GvQY8dn9fUm-vH3zefu-uPn47sN2c1NALXgq-nIA6DtoOTZVXRnDZdfwqs6baMnKqpI9sAEktqau2gZAGAGGtZqJtu2aprwkrxfd_dxPaABdCnpU-2AnHY7Ka6v-_XF2p279QTXilFaVBV4uAj4mqyLYhLAD7xxCUjx7adhpytX9lOC_zxiTygEBjmMOzs9RCSZlJ5vcWoayBQrBxxhwOHvhTJ1qVblW9btWtdSaKS_-3uFM-NNjBlwvAMxJHiyGk090gMaGk03j7f_VfwFQzbSR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2099896107</pqid></control><display><type>article</type><title>Characterization of membrane-bound sulfane reductase: A missing link in the evolution of modern day respiratory complexes</title><source>Elsevier ScienceDirect Journals</source><source>PubMed Central</source><creator>Wu, Chang-Hao ; Schut, Gerrit J. ; Poole, Farris L. ; Haja, Dominik K. ; Adams, Michael W.W.</creator><creatorcontrib>Wu, Chang-Hao ; Schut, Gerrit J. ; Poole, Farris L. ; Haja, Dominik K. ; Adams, Michael W.W. ; Univ. of Georgia, Athens, GA (United States)</creatorcontrib><description>Hyperthermophilic archaea contain a hydrogen gas–evolving,respiratory membrane–bound NiFe-hydrogenase (MBH) that is very closely related to the aerobic respiratory complex I. During growth on elemental sulfur (S°), these microorganisms also produce a homologous membrane-bound complex (MBX), which generates H2S. MBX evolutionarily links MBH to complex I, but its catalytic function is unknown. Herein, we show that MBX reduces the sulfane sulfur of polysulfides by using ferredoxin (Fd) as the electron donor, and we rename it membrane-bound sulfane reductase (MBS). Two forms of affinity-tagged MBS were purified from genetically engineered Pyrococcus furiosus (a hyperthermophilic archaea species): the 13-subunit holoenzyme (S-MBS) and a cytoplasmic 4-subunit catalytic subcomplex (C-MBS). S-MBS and C-MBS reduced dimethyl trisulfide (DMTS) with comparable Km (∼490 μm) and Vmax values (12 μmol/min/mg). The MBS catalytic subunit (MbsL), but not that of complex I (NuoD), retains two of four NiFe-coordinating cysteine residues of MBH. However, these cysteine residues were not involved in MBS catalysis because a mutant P. furiosus strain (MbsLC85A/C385A) grew normally with S°. The products of the DMTS reduction and properties of polysulfides indicated that in the physiological reaction, MBS uses Fd (Eo′ = −480 mV) to reduce sulfane sulfur (Eo′ −260 mV) and cleave organic (RSnR, n ≥ 3) and anionic polysulfides (Sn2−, n ≥ 4) but that it does not produce H2S. Based on homology to MBH, MBS also creates an ion gradient for ATP synthesis. This work establishes the electrochemical reaction catalyzed by MBS that is intermediate in the evolution from proton- to quinone-reducing respiratory complexes.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.RA118.005092</identifier><identifier>PMID: 30181217</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Archaea ; archaea hydrogenase ; Archaeal Proteins - genetics ; Archaeal Proteins - metabolism ; BASIC BIOLOGICAL SCIENCES ; Biochemistry &amp; Molecular Biology ; Bioenergetics ; Catalytic Domain ; Cell Membrane - metabolism ; Complex ; Complex I ; Electron Transport Complex I - genetics ; Electron Transport Complex I - metabolism ; evolution ; hydrogen sulfide ; hydrogenase ; membrane energetics ; membrane enzyme ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Oxidation-Reduction ; oxidation-reduction (redox) ; Oxidoreductases - genetics ; Oxidoreductases - metabolism ; protein purification ; Pyrococcus furiosus - enzymology ; Pyrococcus furiosus - growth &amp; development ; respiration ; respiratory complex ; Sulfides - chemistry ; sulfur</subject><ispartof>The Journal of biological chemistry, 2018-10, Vol.293 (43), p.16687-16696</ispartof><rights>2018 © 2018 Wu et al.</rights><rights>2018 Wu et al.</rights><rights>2018 Wu et al. 2018 Wu et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-b3fccb8c71e6454dd1986145049a903449bc0fc9e7d5476cc2d2cd07a02778663</citedby><cites>FETCH-LOGICAL-c521t-b3fccb8c71e6454dd1986145049a903449bc0fc9e7d5476cc2d2cd07a02778663</cites><orcidid>0000-0002-9796-5014 ; 0000000297965014</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6204914/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925820332336$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30181217$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1614606$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Chang-Hao</creatorcontrib><creatorcontrib>Schut, Gerrit J.</creatorcontrib><creatorcontrib>Poole, Farris L.</creatorcontrib><creatorcontrib>Haja, Dominik K.</creatorcontrib><creatorcontrib>Adams, Michael W.W.</creatorcontrib><creatorcontrib>Univ. of Georgia, Athens, GA (United States)</creatorcontrib><title>Characterization of membrane-bound sulfane reductase: A missing link in the evolution of modern day respiratory complexes</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Hyperthermophilic archaea contain a hydrogen gas–evolving,respiratory membrane–bound NiFe-hydrogenase (MBH) that is very closely related to the aerobic respiratory complex I. During growth on elemental sulfur (S°), these microorganisms also produce a homologous membrane-bound complex (MBX), which generates H2S. MBX evolutionarily links MBH to complex I, but its catalytic function is unknown. Herein, we show that MBX reduces the sulfane sulfur of polysulfides by using ferredoxin (Fd) as the electron donor, and we rename it membrane-bound sulfane reductase (MBS). Two forms of affinity-tagged MBS were purified from genetically engineered Pyrococcus furiosus (a hyperthermophilic archaea species): the 13-subunit holoenzyme (S-MBS) and a cytoplasmic 4-subunit catalytic subcomplex (C-MBS). S-MBS and C-MBS reduced dimethyl trisulfide (DMTS) with comparable Km (∼490 μm) and Vmax values (12 μmol/min/mg). The MBS catalytic subunit (MbsL), but not that of complex I (NuoD), retains two of four NiFe-coordinating cysteine residues of MBH. However, these cysteine residues were not involved in MBS catalysis because a mutant P. furiosus strain (MbsLC85A/C385A) grew normally with S°. The products of the DMTS reduction and properties of polysulfides indicated that in the physiological reaction, MBS uses Fd (Eo′ = −480 mV) to reduce sulfane sulfur (Eo′ −260 mV) and cleave organic (RSnR, n ≥ 3) and anionic polysulfides (Sn2−, n ≥ 4) but that it does not produce H2S. Based on homology to MBH, MBS also creates an ion gradient for ATP synthesis. This work establishes the electrochemical reaction catalyzed by MBS that is intermediate in the evolution from proton- to quinone-reducing respiratory complexes.</description><subject>Archaea</subject><subject>archaea hydrogenase</subject><subject>Archaeal Proteins - genetics</subject><subject>Archaeal Proteins - metabolism</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biochemistry &amp; Molecular Biology</subject><subject>Bioenergetics</subject><subject>Catalytic Domain</subject><subject>Cell Membrane - metabolism</subject><subject>Complex</subject><subject>Complex I</subject><subject>Electron Transport Complex I - genetics</subject><subject>Electron Transport Complex I - metabolism</subject><subject>evolution</subject><subject>hydrogen sulfide</subject><subject>hydrogenase</subject><subject>membrane energetics</subject><subject>membrane enzyme</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Oxidation-Reduction</subject><subject>oxidation-reduction (redox)</subject><subject>Oxidoreductases - genetics</subject><subject>Oxidoreductases - metabolism</subject><subject>protein purification</subject><subject>Pyrococcus furiosus - enzymology</subject><subject>Pyrococcus furiosus - growth &amp; development</subject><subject>respiration</subject><subject>respiratory complex</subject><subject>Sulfides - chemistry</subject><subject>sulfur</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1UU2LFDEUDKK44-rdkwRPe-kxSX9mD8Iw-AULgih4C-mX1ztZu5MxSQ-Ov96MvQ56MJcQUlWvXhUhzzlbc9ZWr-56WH_acN6tGauZFA_IirOuLMqaf31IVowJXkhRdxfkSYx3LJ9K8sfkomS844K3K3Lc7nTQkDDYnzpZ76gf6IRTH7TDovezMzTO45BfNKCZIemI13RDJxujdbd0tO4btY6mHVI8-HE-i3iDwVGjj5kY9zbo5MORgp_2I_7A-JQ8GvQY8dn9fUm-vH3zefu-uPn47sN2c1NALXgq-nIA6DtoOTZVXRnDZdfwqs6baMnKqpI9sAEktqau2gZAGAGGtZqJtu2aprwkrxfd_dxPaABdCnpU-2AnHY7Ka6v-_XF2p279QTXilFaVBV4uAj4mqyLYhLAD7xxCUjx7adhpytX9lOC_zxiTygEBjmMOzs9RCSZlJ5vcWoayBQrBxxhwOHvhTJ1qVblW9btWtdSaKS_-3uFM-NNjBlwvAMxJHiyGk090gMaGk03j7f_VfwFQzbSR</recordid><startdate>20181026</startdate><enddate>20181026</enddate><creator>Wu, Chang-Hao</creator><creator>Schut, Gerrit J.</creator><creator>Poole, Farris L.</creator><creator>Haja, Dominik K.</creator><creator>Adams, Michael W.W.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9796-5014</orcidid><orcidid>https://orcid.org/0000000297965014</orcidid></search><sort><creationdate>20181026</creationdate><title>Characterization of membrane-bound sulfane reductase: A missing link in the evolution of modern day respiratory complexes</title><author>Wu, Chang-Hao ; Schut, Gerrit J. ; Poole, Farris L. ; Haja, Dominik K. ; Adams, Michael W.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-b3fccb8c71e6454dd1986145049a903449bc0fc9e7d5476cc2d2cd07a02778663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Archaea</topic><topic>archaea hydrogenase</topic><topic>Archaeal Proteins - genetics</topic><topic>Archaeal Proteins - metabolism</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biochemistry &amp; Molecular Biology</topic><topic>Bioenergetics</topic><topic>Catalytic Domain</topic><topic>Cell Membrane - metabolism</topic><topic>Complex</topic><topic>Complex I</topic><topic>Electron Transport Complex I - genetics</topic><topic>Electron Transport Complex I - metabolism</topic><topic>evolution</topic><topic>hydrogen sulfide</topic><topic>hydrogenase</topic><topic>membrane energetics</topic><topic>membrane enzyme</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Oxidation-Reduction</topic><topic>oxidation-reduction (redox)</topic><topic>Oxidoreductases - genetics</topic><topic>Oxidoreductases - metabolism</topic><topic>protein purification</topic><topic>Pyrococcus furiosus - enzymology</topic><topic>Pyrococcus furiosus - growth &amp; development</topic><topic>respiration</topic><topic>respiratory complex</topic><topic>Sulfides - chemistry</topic><topic>sulfur</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Chang-Hao</creatorcontrib><creatorcontrib>Schut, Gerrit J.</creatorcontrib><creatorcontrib>Poole, Farris L.</creatorcontrib><creatorcontrib>Haja, Dominik K.</creatorcontrib><creatorcontrib>Adams, Michael W.W.</creatorcontrib><creatorcontrib>Univ. of Georgia, Athens, GA (United States)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Chang-Hao</au><au>Schut, Gerrit J.</au><au>Poole, Farris L.</au><au>Haja, Dominik K.</au><au>Adams, Michael W.W.</au><aucorp>Univ. of Georgia, Athens, GA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of membrane-bound sulfane reductase: A missing link in the evolution of modern day respiratory complexes</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2018-10-26</date><risdate>2018</risdate><volume>293</volume><issue>43</issue><spage>16687</spage><epage>16696</epage><pages>16687-16696</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Hyperthermophilic archaea contain a hydrogen gas–evolving,respiratory membrane–bound NiFe-hydrogenase (MBH) that is very closely related to the aerobic respiratory complex I. During growth on elemental sulfur (S°), these microorganisms also produce a homologous membrane-bound complex (MBX), which generates H2S. MBX evolutionarily links MBH to complex I, but its catalytic function is unknown. Herein, we show that MBX reduces the sulfane sulfur of polysulfides by using ferredoxin (Fd) as the electron donor, and we rename it membrane-bound sulfane reductase (MBS). Two forms of affinity-tagged MBS were purified from genetically engineered Pyrococcus furiosus (a hyperthermophilic archaea species): the 13-subunit holoenzyme (S-MBS) and a cytoplasmic 4-subunit catalytic subcomplex (C-MBS). S-MBS and C-MBS reduced dimethyl trisulfide (DMTS) with comparable Km (∼490 μm) and Vmax values (12 μmol/min/mg). The MBS catalytic subunit (MbsL), but not that of complex I (NuoD), retains two of four NiFe-coordinating cysteine residues of MBH. However, these cysteine residues were not involved in MBS catalysis because a mutant P. furiosus strain (MbsLC85A/C385A) grew normally with S°. The products of the DMTS reduction and properties of polysulfides indicated that in the physiological reaction, MBS uses Fd (Eo′ = −480 mV) to reduce sulfane sulfur (Eo′ −260 mV) and cleave organic (RSnR, n ≥ 3) and anionic polysulfides (Sn2−, n ≥ 4) but that it does not produce H2S. Based on homology to MBH, MBS also creates an ion gradient for ATP synthesis. This work establishes the electrochemical reaction catalyzed by MBS that is intermediate in the evolution from proton- to quinone-reducing respiratory complexes.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30181217</pmid><doi>10.1074/jbc.RA118.005092</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9796-5014</orcidid><orcidid>https://orcid.org/0000000297965014</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2018-10, Vol.293 (43), p.16687-16696
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6204914
source Elsevier ScienceDirect Journals; PubMed Central
subjects Archaea
archaea hydrogenase
Archaeal Proteins - genetics
Archaeal Proteins - metabolism
BASIC BIOLOGICAL SCIENCES
Biochemistry & Molecular Biology
Bioenergetics
Catalytic Domain
Cell Membrane - metabolism
Complex
Complex I
Electron Transport Complex I - genetics
Electron Transport Complex I - metabolism
evolution
hydrogen sulfide
hydrogenase
membrane energetics
membrane enzyme
Membrane Proteins - genetics
Membrane Proteins - metabolism
Oxidation-Reduction
oxidation-reduction (redox)
Oxidoreductases - genetics
Oxidoreductases - metabolism
protein purification
Pyrococcus furiosus - enzymology
Pyrococcus furiosus - growth & development
respiration
respiratory complex
Sulfides - chemistry
sulfur
title Characterization of membrane-bound sulfane reductase: A missing link in the evolution of modern day respiratory complexes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A46%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20membrane-bound%20sulfane%20reductase:%20A%20missing%20link%20in%20the%20evolution%20of%20modern%20day%20respiratory%20complexes&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Wu,%20Chang-Hao&rft.aucorp=Univ.%20of%20Georgia,%20Athens,%20GA%20(United%20States)&rft.date=2018-10-26&rft.volume=293&rft.issue=43&rft.spage=16687&rft.epage=16696&rft.pages=16687-16696&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.RA118.005092&rft_dat=%3Cproquest_pubme%3E2099896107%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c521t-b3fccb8c71e6454dd1986145049a903449bc0fc9e7d5476cc2d2cd07a02778663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2099896107&rft_id=info:pmid/30181217&rfr_iscdi=true