Loading…
Network partitioning algorithms as cooperative games
The paper is devoted to game-theoretic methods for community detection in networks. The traditional methods for detecting community structure are based on selecting dense subgraphs inside the network. Here we propose to use the methods of cooperative game theory that highlight not only the link dens...
Saved in:
Published in: | Computational social networks 2018-12, Vol.5 (1), p.11-28, Article 11 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The paper is devoted to game-theoretic methods for community detection in networks. The traditional methods for detecting community structure are based on selecting dense subgraphs inside the network. Here we propose to use the methods of cooperative game theory that highlight not only the link density but also the mechanisms of cluster formation. Specifically, we suggest two approaches from cooperative game theory: the first approach is based on the Myerson value, whereas the second approach is based on hedonic games. Both approaches allow to detect clusters with various resolutions. However, the tuning of the resolution parameter in the hedonic games approach is particularly intuitive. Furthermore, the modularity-based approach and its generalizations as well as ratio cut and normalized cut methods can be viewed as particular cases of the hedonic games. Finally, for approaches based on potential hedonic games we suggest a very efficient computational scheme using Gibbs sampling. |
---|---|
ISSN: | 2197-4314 2197-4314 |
DOI: | 10.1186/s40649-018-0059-5 |