Loading…
Dietary Sodium Restriction Reduces Arterial Stiffness, Vascular TGF-β-Dependent Fibrosis and Marinobufagenin in Young Normotensive Rats
High salt (HS) intake stimulates the production of marinobufagenin (MBG), an endogenous steroidal Na/K-ATPase ligand, which activates profibrotic signaling. HS is accompanied by a blood pressure (BP) increase in salt-sensitive hypertension, but not in normotensive animals. Here, we investigated whet...
Saved in:
Published in: | International journal of molecular sciences 2018-10, Vol.19 (10), p.3168 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | High salt (HS) intake stimulates the production of marinobufagenin (MBG), an endogenous steroidal Na/K-ATPase ligand, which activates profibrotic signaling. HS is accompanied by a blood pressure (BP) increase in salt-sensitive hypertension, but not in normotensive animals. Here, we investigated whether HS stimulates MBG production and activates transforming growth factor-beta (TGF-β) profibrotic signaling in young normotensive rats, and whether these changes can be reversed by reducing salt to a normal salt (NS) level. Three-month old male Sprague⁻Dawley rats received NS for 4 and 8 weeks (0.5% NaCl; NS4 and NS8), or HS for 4 and 8 weeks (4% NaCl; HS4 and HS8), or HS for 4 weeks followed by NS for 4 weeks (HS4/NS4),
= 8/group. Systolic BP (SBP), pulse wave velocity (PWV), MBG excretion, aortic collagen 1α2, collagen 4α1 and TGF-β, Smad2, Smad3, Fli-1 mRNA, and total collagen abundance were measured at baseline (BL), and on weeks 4 and 8. Statistical analysis was performed using one-way ANOVA. SBP was not affected by HS (125 ± 5 and 126 ± 6 vs. 128 ± 7 mmHg, HS4 and HS8 vs. BL,
> 0.05). HS increased MBG (164 ± 19 vs. 103 ± 19 pmol/24 h/kg, HS4 vs. BL,
< 0.05) and PWV (3.7 ± 0.2 vs. 2.7 ± 0.2 m/s, HS4 vs. NS4,
< 0.05). HS8 was associated with a further increase in MBG and PWV, with an increase in aortic
80%),
(50%),
(30%),
(30%) and
(45%) mRNAs, and aortic wall collagen (180%) vs. NS8 (all
< 0.05). NS following HS downregulated HS-induced factors: in HS4/NS4, the MBG level was 91 ± 12 pmol/24 h/kg (twofold lower than HS8,
< 0.01), PWV was 3.7 ± 0.3 vs. 4.7 ± 0.2 m/s (HS4/NS4 vs. HS8,
< 0.05), aortic wall
,
,
,
,
mRNAs, and collagen abundance were reversed by salt reduction to the BL levels (
< 0.05). HS was associated with an activation of TGF-β signaling, aortic fibrosis and aortic stiffness accompanied by an MBG increase in the absence of SBP changes in young normotensive rats. The reduction of dietary salt following HS decreased MBG, PWV, aortic wall collagen and TGF-β. Thus, HS-induced aortic stiffness in normotensive animals occurred in the context of elevated MBG, which may activate SMAD-dependent TGF-β pro-fibrotic signaling. This data suggests that a decrease in salt consumption could help to restore aortic elasticity and diminish the risk of cardiovascular disease by reducing the production of the pro-fibrotic factor MBG. |
---|---|
ISSN: | 1422-0067 1422-0067 |
DOI: | 10.3390/ijms19103168 |