Loading…
Supracellular contraction at the rear of neural crest cell groups drives collective chemotaxis
Collective cell chemotaxis, the directed migration of cell groups along gradients of soluble chemical cues, underlies various developmental and pathological processes. We use neural crest cells, a migratory embryonic stem cell population whose behavior has been likened to malignant invasion, to stud...
Saved in:
Published in: | Science (American Association for the Advancement of Science) 2018-10, Vol.362 (6412), p.339-343 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c487t-ebcc463336d5c6d7648f6fef86bdbc0970e736ebc97dda1e827d1396543d18d23 |
---|---|
cites | cdi_FETCH-LOGICAL-c487t-ebcc463336d5c6d7648f6fef86bdbc0970e736ebc97dda1e827d1396543d18d23 |
container_end_page | 343 |
container_issue | 6412 |
container_start_page | 339 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 362 |
creator | Shellard, Adam Szabó, András Trepat, Xavier Mayor, Roberto |
description | Collective cell chemotaxis, the directed migration of cell groups along gradients of soluble chemical cues, underlies various developmental and pathological processes. We use neural crest cells, a migratory embryonic stem cell population whose behavior has been likened to malignant invasion, to study collective chemotaxis in vivo. Studying
and zebrafish, we have shown that the neural crest exhibits a tensile actomyosin ring at the edge of the migratory cell group that contracts in a supracellular fashion. This contractility is polarized during collective cell chemotaxis: It is inhibited at the front but persists at the rear of the cell cluster. The differential contractility drives directed collective cell migration ex vivo and in vivo through the intercalation of rear cells. Thus, in neural crest cells, collective chemotaxis works by rear-wheel drive. |
doi_str_mv | 10.1126/science.aau3301 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6218007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2122764976</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-ebcc463336d5c6d7648f6fef86bdbc0970e736ebc97dda1e827d1396543d18d23</originalsourceid><addsrcrecordid>eNpdkUFrGzEQhUVpadwk596KoJdc1pY0a2n3UighaQKGHpJcI2Rp1t6wXrnSyiT_PlrsmiQnMZrvPebxCPnO2ZRzIWfRtthbnBqTABj_RCac1fOiFgw-kwljIIuKqfkJ-RbjE2N5V8NXcgIMQJWsnpDHu7QNxmLXpc4Ean0_5HFofU_NQIc10oD53ze0xxRMR23AONBRQFfBp22kLrQ7jFnadZiVO6R2jRs_mOc2npEvjekinh_eU_JwfXV_eVMs_v65vfy9KGxZqaHApbWlBADp5lY6JcuqkQ02lVy6pWW1YqhAZqpWzhmOlVCOQy3nJTheOQGn5Nfed5uWG3QWxxid3oZ2Y8KL9qbV7zd9u9Yrv9NS8IoxlQ0uDgbB_0s5ot60cUxpevQpasEFKAGlgIz-_IA--RT6HG-kRD6-VjJTsz1lg48xYHM8hjM9dqcP3elDd1nx422GI_-_LHgFttqaGA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2122764976</pqid></control><display><type>article</type><title>Supracellular contraction at the rear of neural crest cell groups drives collective chemotaxis</title><source>American Association for the Advancement of Science</source><source>Alma/SFX Local Collection</source><creator>Shellard, Adam ; Szabó, András ; Trepat, Xavier ; Mayor, Roberto</creator><creatorcontrib>Shellard, Adam ; Szabó, András ; Trepat, Xavier ; Mayor, Roberto</creatorcontrib><description>Collective cell chemotaxis, the directed migration of cell groups along gradients of soluble chemical cues, underlies various developmental and pathological processes. We use neural crest cells, a migratory embryonic stem cell population whose behavior has been likened to malignant invasion, to study collective chemotaxis in vivo. Studying
and zebrafish, we have shown that the neural crest exhibits a tensile actomyosin ring at the edge of the migratory cell group that contracts in a supracellular fashion. This contractility is polarized during collective cell chemotaxis: It is inhibited at the front but persists at the rear of the cell cluster. The differential contractility drives directed collective cell migration ex vivo and in vivo through the intercalation of rear cells. Thus, in neural crest cells, collective chemotaxis works by rear-wheel drive.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aau3301</identifier><identifier>PMID: 30337409</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Actomyosin ; Actomyosin - physiology ; Animals ; Cell adhesion & migration ; Cell migration ; Chemical stimuli ; Chemokine CXCL12 ; Chemotaxis ; Contractility ; Contraction ; Danio rerio ; Embryo cells ; Embryonic Stem Cells - physiology ; Embryos ; In vivo methods and tests ; Mesenchyme ; Neural crest ; Neural Crest - cytology ; Neural Stem Cells - physiology ; Optogenetics ; Organic chemistry ; Stem cells ; Xenopus ; Zebrafish ; Zebrafish Proteins</subject><ispartof>Science (American Association for the Advancement of Science), 2018-10, Vol.362 (6412), p.339-343</ispartof><rights>Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.</rights><rights>Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-ebcc463336d5c6d7648f6fef86bdbc0970e736ebc97dda1e827d1396543d18d23</citedby><cites>FETCH-LOGICAL-c487t-ebcc463336d5c6d7648f6fef86bdbc0970e736ebc97dda1e827d1396543d18d23</cites><orcidid>0000-0001-9053-9613 ; 0000-0002-7621-5214 ; 0000-0002-8924-038X ; 0000-0002-7609-9049</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2884,2885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30337409$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shellard, Adam</creatorcontrib><creatorcontrib>Szabó, András</creatorcontrib><creatorcontrib>Trepat, Xavier</creatorcontrib><creatorcontrib>Mayor, Roberto</creatorcontrib><title>Supracellular contraction at the rear of neural crest cell groups drives collective chemotaxis</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Collective cell chemotaxis, the directed migration of cell groups along gradients of soluble chemical cues, underlies various developmental and pathological processes. We use neural crest cells, a migratory embryonic stem cell population whose behavior has been likened to malignant invasion, to study collective chemotaxis in vivo. Studying
and zebrafish, we have shown that the neural crest exhibits a tensile actomyosin ring at the edge of the migratory cell group that contracts in a supracellular fashion. This contractility is polarized during collective cell chemotaxis: It is inhibited at the front but persists at the rear of the cell cluster. The differential contractility drives directed collective cell migration ex vivo and in vivo through the intercalation of rear cells. Thus, in neural crest cells, collective chemotaxis works by rear-wheel drive.</description><subject>Actomyosin</subject><subject>Actomyosin - physiology</subject><subject>Animals</subject><subject>Cell adhesion & migration</subject><subject>Cell migration</subject><subject>Chemical stimuli</subject><subject>Chemokine CXCL12</subject><subject>Chemotaxis</subject><subject>Contractility</subject><subject>Contraction</subject><subject>Danio rerio</subject><subject>Embryo cells</subject><subject>Embryonic Stem Cells - physiology</subject><subject>Embryos</subject><subject>In vivo methods and tests</subject><subject>Mesenchyme</subject><subject>Neural crest</subject><subject>Neural Crest - cytology</subject><subject>Neural Stem Cells - physiology</subject><subject>Optogenetics</subject><subject>Organic chemistry</subject><subject>Stem cells</subject><subject>Xenopus</subject><subject>Zebrafish</subject><subject>Zebrafish Proteins</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkUFrGzEQhUVpadwk596KoJdc1pY0a2n3UighaQKGHpJcI2Rp1t6wXrnSyiT_PlrsmiQnMZrvPebxCPnO2ZRzIWfRtthbnBqTABj_RCac1fOiFgw-kwljIIuKqfkJ-RbjE2N5V8NXcgIMQJWsnpDHu7QNxmLXpc4Ean0_5HFofU_NQIc10oD53ze0xxRMR23AONBRQFfBp22kLrQ7jFnadZiVO6R2jRs_mOc2npEvjekinh_eU_JwfXV_eVMs_v65vfy9KGxZqaHApbWlBADp5lY6JcuqkQ02lVy6pWW1YqhAZqpWzhmOlVCOQy3nJTheOQGn5Nfed5uWG3QWxxid3oZ2Y8KL9qbV7zd9u9Yrv9NS8IoxlQ0uDgbB_0s5ot60cUxpevQpasEFKAGlgIz-_IA--RT6HG-kRD6-VjJTsz1lg48xYHM8hjM9dqcP3elDd1nx422GI_-_LHgFttqaGA</recordid><startdate>20181019</startdate><enddate>20181019</enddate><creator>Shellard, Adam</creator><creator>Szabó, András</creator><creator>Trepat, Xavier</creator><creator>Mayor, Roberto</creator><general>The American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9053-9613</orcidid><orcidid>https://orcid.org/0000-0002-7621-5214</orcidid><orcidid>https://orcid.org/0000-0002-8924-038X</orcidid><orcidid>https://orcid.org/0000-0002-7609-9049</orcidid></search><sort><creationdate>20181019</creationdate><title>Supracellular contraction at the rear of neural crest cell groups drives collective chemotaxis</title><author>Shellard, Adam ; Szabó, András ; Trepat, Xavier ; Mayor, Roberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-ebcc463336d5c6d7648f6fef86bdbc0970e736ebc97dda1e827d1396543d18d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Actomyosin</topic><topic>Actomyosin - physiology</topic><topic>Animals</topic><topic>Cell adhesion & migration</topic><topic>Cell migration</topic><topic>Chemical stimuli</topic><topic>Chemokine CXCL12</topic><topic>Chemotaxis</topic><topic>Contractility</topic><topic>Contraction</topic><topic>Danio rerio</topic><topic>Embryo cells</topic><topic>Embryonic Stem Cells - physiology</topic><topic>Embryos</topic><topic>In vivo methods and tests</topic><topic>Mesenchyme</topic><topic>Neural crest</topic><topic>Neural Crest - cytology</topic><topic>Neural Stem Cells - physiology</topic><topic>Optogenetics</topic><topic>Organic chemistry</topic><topic>Stem cells</topic><topic>Xenopus</topic><topic>Zebrafish</topic><topic>Zebrafish Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shellard, Adam</creatorcontrib><creatorcontrib>Szabó, András</creatorcontrib><creatorcontrib>Trepat, Xavier</creatorcontrib><creatorcontrib>Mayor, Roberto</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shellard, Adam</au><au>Szabó, András</au><au>Trepat, Xavier</au><au>Mayor, Roberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supracellular contraction at the rear of neural crest cell groups drives collective chemotaxis</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2018-10-19</date><risdate>2018</risdate><volume>362</volume><issue>6412</issue><spage>339</spage><epage>343</epage><pages>339-343</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Collective cell chemotaxis, the directed migration of cell groups along gradients of soluble chemical cues, underlies various developmental and pathological processes. We use neural crest cells, a migratory embryonic stem cell population whose behavior has been likened to malignant invasion, to study collective chemotaxis in vivo. Studying
and zebrafish, we have shown that the neural crest exhibits a tensile actomyosin ring at the edge of the migratory cell group that contracts in a supracellular fashion. This contractility is polarized during collective cell chemotaxis: It is inhibited at the front but persists at the rear of the cell cluster. The differential contractility drives directed collective cell migration ex vivo and in vivo through the intercalation of rear cells. Thus, in neural crest cells, collective chemotaxis works by rear-wheel drive.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>30337409</pmid><doi>10.1126/science.aau3301</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-9053-9613</orcidid><orcidid>https://orcid.org/0000-0002-7621-5214</orcidid><orcidid>https://orcid.org/0000-0002-8924-038X</orcidid><orcidid>https://orcid.org/0000-0002-7609-9049</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2018-10, Vol.362 (6412), p.339-343 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6218007 |
source | American Association for the Advancement of Science; Alma/SFX Local Collection |
subjects | Actomyosin Actomyosin - physiology Animals Cell adhesion & migration Cell migration Chemical stimuli Chemokine CXCL12 Chemotaxis Contractility Contraction Danio rerio Embryo cells Embryonic Stem Cells - physiology Embryos In vivo methods and tests Mesenchyme Neural crest Neural Crest - cytology Neural Stem Cells - physiology Optogenetics Organic chemistry Stem cells Xenopus Zebrafish Zebrafish Proteins |
title | Supracellular contraction at the rear of neural crest cell groups drives collective chemotaxis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A31%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supracellular%20contraction%20at%20the%20rear%20of%20neural%20crest%20cell%20groups%20drives%20collective%20chemotaxis&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Shellard,%20Adam&rft.date=2018-10-19&rft.volume=362&rft.issue=6412&rft.spage=339&rft.epage=343&rft.pages=339-343&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aau3301&rft_dat=%3Cproquest_pubme%3E2122764976%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c487t-ebcc463336d5c6d7648f6fef86bdbc0970e736ebc97dda1e827d1396543d18d23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2122764976&rft_id=info:pmid/30337409&rfr_iscdi=true |