Loading…

Supracellular contraction at the rear of neural crest cell groups drives collective chemotaxis

Collective cell chemotaxis, the directed migration of cell groups along gradients of soluble chemical cues, underlies various developmental and pathological processes. We use neural crest cells, a migratory embryonic stem cell population whose behavior has been likened to malignant invasion, to stud...

Full description

Saved in:
Bibliographic Details
Published in:Science (American Association for the Advancement of Science) 2018-10, Vol.362 (6412), p.339-343
Main Authors: Shellard, Adam, Szabó, András, Trepat, Xavier, Mayor, Roberto
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c487t-ebcc463336d5c6d7648f6fef86bdbc0970e736ebc97dda1e827d1396543d18d23
cites cdi_FETCH-LOGICAL-c487t-ebcc463336d5c6d7648f6fef86bdbc0970e736ebc97dda1e827d1396543d18d23
container_end_page 343
container_issue 6412
container_start_page 339
container_title Science (American Association for the Advancement of Science)
container_volume 362
creator Shellard, Adam
Szabó, András
Trepat, Xavier
Mayor, Roberto
description Collective cell chemotaxis, the directed migration of cell groups along gradients of soluble chemical cues, underlies various developmental and pathological processes. We use neural crest cells, a migratory embryonic stem cell population whose behavior has been likened to malignant invasion, to study collective chemotaxis in vivo. Studying and zebrafish, we have shown that the neural crest exhibits a tensile actomyosin ring at the edge of the migratory cell group that contracts in a supracellular fashion. This contractility is polarized during collective cell chemotaxis: It is inhibited at the front but persists at the rear of the cell cluster. The differential contractility drives directed collective cell migration ex vivo and in vivo through the intercalation of rear cells. Thus, in neural crest cells, collective chemotaxis works by rear-wheel drive.
doi_str_mv 10.1126/science.aau3301
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6218007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2122764976</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-ebcc463336d5c6d7648f6fef86bdbc0970e736ebc97dda1e827d1396543d18d23</originalsourceid><addsrcrecordid>eNpdkUFrGzEQhUVpadwk596KoJdc1pY0a2n3UighaQKGHpJcI2Rp1t6wXrnSyiT_PlrsmiQnMZrvPebxCPnO2ZRzIWfRtthbnBqTABj_RCac1fOiFgw-kwljIIuKqfkJ-RbjE2N5V8NXcgIMQJWsnpDHu7QNxmLXpc4Ean0_5HFofU_NQIc10oD53ze0xxRMR23AONBRQFfBp22kLrQ7jFnadZiVO6R2jRs_mOc2npEvjekinh_eU_JwfXV_eVMs_v65vfy9KGxZqaHApbWlBADp5lY6JcuqkQ02lVy6pWW1YqhAZqpWzhmOlVCOQy3nJTheOQGn5Nfed5uWG3QWxxid3oZ2Y8KL9qbV7zd9u9Yrv9NS8IoxlQ0uDgbB_0s5ot60cUxpevQpasEFKAGlgIz-_IA--RT6HG-kRD6-VjJTsz1lg48xYHM8hjM9dqcP3elDd1nx422GI_-_LHgFttqaGA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2122764976</pqid></control><display><type>article</type><title>Supracellular contraction at the rear of neural crest cell groups drives collective chemotaxis</title><source>American Association for the Advancement of Science</source><source>Alma/SFX Local Collection</source><creator>Shellard, Adam ; Szabó, András ; Trepat, Xavier ; Mayor, Roberto</creator><creatorcontrib>Shellard, Adam ; Szabó, András ; Trepat, Xavier ; Mayor, Roberto</creatorcontrib><description>Collective cell chemotaxis, the directed migration of cell groups along gradients of soluble chemical cues, underlies various developmental and pathological processes. We use neural crest cells, a migratory embryonic stem cell population whose behavior has been likened to malignant invasion, to study collective chemotaxis in vivo. Studying and zebrafish, we have shown that the neural crest exhibits a tensile actomyosin ring at the edge of the migratory cell group that contracts in a supracellular fashion. This contractility is polarized during collective cell chemotaxis: It is inhibited at the front but persists at the rear of the cell cluster. The differential contractility drives directed collective cell migration ex vivo and in vivo through the intercalation of rear cells. Thus, in neural crest cells, collective chemotaxis works by rear-wheel drive.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aau3301</identifier><identifier>PMID: 30337409</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Actomyosin ; Actomyosin - physiology ; Animals ; Cell adhesion &amp; migration ; Cell migration ; Chemical stimuli ; Chemokine CXCL12 ; Chemotaxis ; Contractility ; Contraction ; Danio rerio ; Embryo cells ; Embryonic Stem Cells - physiology ; Embryos ; In vivo methods and tests ; Mesenchyme ; Neural crest ; Neural Crest - cytology ; Neural Stem Cells - physiology ; Optogenetics ; Organic chemistry ; Stem cells ; Xenopus ; Zebrafish ; Zebrafish Proteins</subject><ispartof>Science (American Association for the Advancement of Science), 2018-10, Vol.362 (6412), p.339-343</ispartof><rights>Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.</rights><rights>Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-ebcc463336d5c6d7648f6fef86bdbc0970e736ebc97dda1e827d1396543d18d23</citedby><cites>FETCH-LOGICAL-c487t-ebcc463336d5c6d7648f6fef86bdbc0970e736ebc97dda1e827d1396543d18d23</cites><orcidid>0000-0001-9053-9613 ; 0000-0002-7621-5214 ; 0000-0002-8924-038X ; 0000-0002-7609-9049</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2884,2885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30337409$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shellard, Adam</creatorcontrib><creatorcontrib>Szabó, András</creatorcontrib><creatorcontrib>Trepat, Xavier</creatorcontrib><creatorcontrib>Mayor, Roberto</creatorcontrib><title>Supracellular contraction at the rear of neural crest cell groups drives collective chemotaxis</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Collective cell chemotaxis, the directed migration of cell groups along gradients of soluble chemical cues, underlies various developmental and pathological processes. We use neural crest cells, a migratory embryonic stem cell population whose behavior has been likened to malignant invasion, to study collective chemotaxis in vivo. Studying and zebrafish, we have shown that the neural crest exhibits a tensile actomyosin ring at the edge of the migratory cell group that contracts in a supracellular fashion. This contractility is polarized during collective cell chemotaxis: It is inhibited at the front but persists at the rear of the cell cluster. The differential contractility drives directed collective cell migration ex vivo and in vivo through the intercalation of rear cells. Thus, in neural crest cells, collective chemotaxis works by rear-wheel drive.</description><subject>Actomyosin</subject><subject>Actomyosin - physiology</subject><subject>Animals</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell migration</subject><subject>Chemical stimuli</subject><subject>Chemokine CXCL12</subject><subject>Chemotaxis</subject><subject>Contractility</subject><subject>Contraction</subject><subject>Danio rerio</subject><subject>Embryo cells</subject><subject>Embryonic Stem Cells - physiology</subject><subject>Embryos</subject><subject>In vivo methods and tests</subject><subject>Mesenchyme</subject><subject>Neural crest</subject><subject>Neural Crest - cytology</subject><subject>Neural Stem Cells - physiology</subject><subject>Optogenetics</subject><subject>Organic chemistry</subject><subject>Stem cells</subject><subject>Xenopus</subject><subject>Zebrafish</subject><subject>Zebrafish Proteins</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkUFrGzEQhUVpadwk596KoJdc1pY0a2n3UighaQKGHpJcI2Rp1t6wXrnSyiT_PlrsmiQnMZrvPebxCPnO2ZRzIWfRtthbnBqTABj_RCac1fOiFgw-kwljIIuKqfkJ-RbjE2N5V8NXcgIMQJWsnpDHu7QNxmLXpc4Ean0_5HFofU_NQIc10oD53ze0xxRMR23AONBRQFfBp22kLrQ7jFnadZiVO6R2jRs_mOc2npEvjekinh_eU_JwfXV_eVMs_v65vfy9KGxZqaHApbWlBADp5lY6JcuqkQ02lVy6pWW1YqhAZqpWzhmOlVCOQy3nJTheOQGn5Nfed5uWG3QWxxid3oZ2Y8KL9qbV7zd9u9Yrv9NS8IoxlQ0uDgbB_0s5ot60cUxpevQpasEFKAGlgIz-_IA--RT6HG-kRD6-VjJTsz1lg48xYHM8hjM9dqcP3elDd1nx422GI_-_LHgFttqaGA</recordid><startdate>20181019</startdate><enddate>20181019</enddate><creator>Shellard, Adam</creator><creator>Szabó, András</creator><creator>Trepat, Xavier</creator><creator>Mayor, Roberto</creator><general>The American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9053-9613</orcidid><orcidid>https://orcid.org/0000-0002-7621-5214</orcidid><orcidid>https://orcid.org/0000-0002-8924-038X</orcidid><orcidid>https://orcid.org/0000-0002-7609-9049</orcidid></search><sort><creationdate>20181019</creationdate><title>Supracellular contraction at the rear of neural crest cell groups drives collective chemotaxis</title><author>Shellard, Adam ; Szabó, András ; Trepat, Xavier ; Mayor, Roberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-ebcc463336d5c6d7648f6fef86bdbc0970e736ebc97dda1e827d1396543d18d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Actomyosin</topic><topic>Actomyosin - physiology</topic><topic>Animals</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell migration</topic><topic>Chemical stimuli</topic><topic>Chemokine CXCL12</topic><topic>Chemotaxis</topic><topic>Contractility</topic><topic>Contraction</topic><topic>Danio rerio</topic><topic>Embryo cells</topic><topic>Embryonic Stem Cells - physiology</topic><topic>Embryos</topic><topic>In vivo methods and tests</topic><topic>Mesenchyme</topic><topic>Neural crest</topic><topic>Neural Crest - cytology</topic><topic>Neural Stem Cells - physiology</topic><topic>Optogenetics</topic><topic>Organic chemistry</topic><topic>Stem cells</topic><topic>Xenopus</topic><topic>Zebrafish</topic><topic>Zebrafish Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shellard, Adam</creatorcontrib><creatorcontrib>Szabó, András</creatorcontrib><creatorcontrib>Trepat, Xavier</creatorcontrib><creatorcontrib>Mayor, Roberto</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shellard, Adam</au><au>Szabó, András</au><au>Trepat, Xavier</au><au>Mayor, Roberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supracellular contraction at the rear of neural crest cell groups drives collective chemotaxis</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2018-10-19</date><risdate>2018</risdate><volume>362</volume><issue>6412</issue><spage>339</spage><epage>343</epage><pages>339-343</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Collective cell chemotaxis, the directed migration of cell groups along gradients of soluble chemical cues, underlies various developmental and pathological processes. We use neural crest cells, a migratory embryonic stem cell population whose behavior has been likened to malignant invasion, to study collective chemotaxis in vivo. Studying and zebrafish, we have shown that the neural crest exhibits a tensile actomyosin ring at the edge of the migratory cell group that contracts in a supracellular fashion. This contractility is polarized during collective cell chemotaxis: It is inhibited at the front but persists at the rear of the cell cluster. The differential contractility drives directed collective cell migration ex vivo and in vivo through the intercalation of rear cells. Thus, in neural crest cells, collective chemotaxis works by rear-wheel drive.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>30337409</pmid><doi>10.1126/science.aau3301</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-9053-9613</orcidid><orcidid>https://orcid.org/0000-0002-7621-5214</orcidid><orcidid>https://orcid.org/0000-0002-8924-038X</orcidid><orcidid>https://orcid.org/0000-0002-7609-9049</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2018-10, Vol.362 (6412), p.339-343
issn 0036-8075
1095-9203
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6218007
source American Association for the Advancement of Science; Alma/SFX Local Collection
subjects Actomyosin
Actomyosin - physiology
Animals
Cell adhesion & migration
Cell migration
Chemical stimuli
Chemokine CXCL12
Chemotaxis
Contractility
Contraction
Danio rerio
Embryo cells
Embryonic Stem Cells - physiology
Embryos
In vivo methods and tests
Mesenchyme
Neural crest
Neural Crest - cytology
Neural Stem Cells - physiology
Optogenetics
Organic chemistry
Stem cells
Xenopus
Zebrafish
Zebrafish Proteins
title Supracellular contraction at the rear of neural crest cell groups drives collective chemotaxis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A31%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supracellular%20contraction%20at%20the%20rear%20of%20neural%20crest%20cell%20groups%20drives%20collective%20chemotaxis&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Shellard,%20Adam&rft.date=2018-10-19&rft.volume=362&rft.issue=6412&rft.spage=339&rft.epage=343&rft.pages=339-343&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aau3301&rft_dat=%3Cproquest_pubme%3E2122764976%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c487t-ebcc463336d5c6d7648f6fef86bdbc0970e736ebc97dda1e827d1396543d18d23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2122764976&rft_id=info:pmid/30337409&rfr_iscdi=true