Loading…
Isotope Tracing of Human Clear Cell Renal Cell Carcinomas Demonstrates Suppressed Glucose Oxidation In Vivo
Clear cell renal cell carcinoma (ccRCC) is the most common form of human kidney cancer. Histological and molecular analyses suggest that ccRCCs have significantly altered metabolism. Recent human studies of lung cancer and intracranial malignancies demonstrated an unexpected preservation of carbohyd...
Saved in:
Published in: | Cell metabolism 2018-11, Vol.28 (5), p.793-800.e2 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Clear cell renal cell carcinoma (ccRCC) is the most common form of human kidney cancer. Histological and molecular analyses suggest that ccRCCs have significantly altered metabolism. Recent human studies of lung cancer and intracranial malignancies demonstrated an unexpected preservation of carbohydrate oxidation in the tricarboxylic acid (TCA) cycle. To test the capacity of ccRCC to oxidize substrates in the TCA cycle, we infused 13C-labeled fuels in ccRCC patients and compared labeling patterns in tumors and adjacent kidney. After infusion with [U-13C]glucose, ccRCCs displayed enhanced glycolytic intermediate labeling, suppressed pyruvate dehydrogenase flow, and reduced TCA cycle labeling, consistent with the Warburg effect. Comparing 13C labeling among ccRCC, brain, and lung tumors revealed striking differences. Primary ccRCC tumors demonstrated the highest enrichment in glycolytic intermediates and lowest enrichment in TCA cycle intermediates. Among human tumors analyzed by intraoperative 13C infusions, ccRCC is the first to demonstrate a convincing shift toward glycolytic metabolism.
[Display omitted]
•First isotope tracing analysis of human ccRCC•Primary ccRCC shows evidence of enhanced glycolysis compared to adjacent kidney•ccRCC shows suppressed glucose oxidation compared to tumors at other anatomic sites
Courtney et al. conducted isotope tracing in clear cell renal cell carcinoma (ccRCC) patients and compared labeling patterns in primary ccRCC tumors and brain and lung tumors. They show enhanced glycolysis and reduced TCA cycle labeling in ccRCC tumors in vivo, which is consistent with the Warburg effect. |
---|---|
ISSN: | 1550-4131 1932-7420 |
DOI: | 10.1016/j.cmet.2018.07.020 |