Loading…

Isotope Tracing of Human Clear Cell Renal Cell Carcinomas Demonstrates Suppressed Glucose Oxidation In Vivo

Clear cell renal cell carcinoma (ccRCC) is the most common form of human kidney cancer. Histological and molecular analyses suggest that ccRCCs have significantly altered metabolism. Recent human studies of lung cancer and intracranial malignancies demonstrated an unexpected preservation of carbohyd...

Full description

Saved in:
Bibliographic Details
Published in:Cell metabolism 2018-11, Vol.28 (5), p.793-800.e2
Main Authors: Courtney, Kevin D., Bezwada, Divya, Mashimo, Tomoyuki, Pichumani, Kumar, Vemireddy, Vamsidhara, Funk, Alexander M., Wimberly, Jennifer, McNeil, Sarah S., Kapur, Payal, Lotan, Yair, Margulis, Vitaly, Cadeddu, Jeffrey A., Pedrosa, Ivan, DeBerardinis, Ralph J., Malloy, Craig R., Bachoo, Robert M., Maher, Elizabeth A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Clear cell renal cell carcinoma (ccRCC) is the most common form of human kidney cancer. Histological and molecular analyses suggest that ccRCCs have significantly altered metabolism. Recent human studies of lung cancer and intracranial malignancies demonstrated an unexpected preservation of carbohydrate oxidation in the tricarboxylic acid (TCA) cycle. To test the capacity of ccRCC to oxidize substrates in the TCA cycle, we infused 13C-labeled fuels in ccRCC patients and compared labeling patterns in tumors and adjacent kidney. After infusion with [U-13C]glucose, ccRCCs displayed enhanced glycolytic intermediate labeling, suppressed pyruvate dehydrogenase flow, and reduced TCA cycle labeling, consistent with the Warburg effect. Comparing 13C labeling among ccRCC, brain, and lung tumors revealed striking differences. Primary ccRCC tumors demonstrated the highest enrichment in glycolytic intermediates and lowest enrichment in TCA cycle intermediates. Among human tumors analyzed by intraoperative 13C infusions, ccRCC is the first to demonstrate a convincing shift toward glycolytic metabolism. [Display omitted] •First isotope tracing analysis of human ccRCC•Primary ccRCC shows evidence of enhanced glycolysis compared to adjacent kidney•ccRCC shows suppressed glucose oxidation compared to tumors at other anatomic sites Courtney et al. conducted isotope tracing in clear cell renal cell carcinoma (ccRCC) patients and compared labeling patterns in primary ccRCC tumors and brain and lung tumors. They show enhanced glycolysis and reduced TCA cycle labeling in ccRCC tumors in vivo, which is consistent with the Warburg effect.
ISSN:1550-4131
1932-7420
DOI:10.1016/j.cmet.2018.07.020