Loading…

Effects of RSC96 Schwann Cell-Derived Exosomes on Proliferation, Senescence, and Apoptosis of Dorsal Root Ganglion Cells In Vitro

BACKGROUND Stress urinary incontinence is a common condition in women and can be associated with peripheral nerve injury. Exosomes. derived from Schwann cells, can enhance the regeneration of axons of the peripheral nervous system. This study aimed to investigate the effects of RSC96 Schwann cell-de...

Full description

Saved in:
Bibliographic Details
Published in:Medical science monitor 2018-11, Vol.24, p.7841-7849
Main Authors: Zhou, Min, Hu, Ming, He, Songming, Li, Bingshu, Liu, Cheng, Min, Jie, Hong, Li
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:BACKGROUND Stress urinary incontinence is a common condition in women and can be associated with peripheral nerve injury. Exosomes. derived from Schwann cells, can enhance the regeneration of axons of the peripheral nervous system. This study aimed to investigate the effects of RSC96 Schwann cell-derived exosomes in a novel in vitro model of dorsal root ganglion (DRG) cell injury induced by cyclic mechanical strain (CMS). MATERIAL AND METHODS RSC96 Schwann cells and DRG cells were cultured in vitro. CMS in DRG cells involved mechanical stretch trauma with 5333 μ strain. ExoQuick-TC polymer was used to precipitate exosomes from RSC96 Schwann cell culture medium and identified by nanoparticle tracking analysis, electron microscopy, and Western blot for detection of CD9 and tumor susceptibility gene 101 (Tsg101) protein. Cultured DRG cells were treated with RSC96 Schwann cell-derived exosomes, followed by measurement of cell viability, proliferation, senescence, and apoptosis using the cell counting kit-8 (CCK-8) assay, senescence-associated beta-galactosidase (SA-β-gal) staining, and Hoechst 33258 (blue) fluorescence nucleic acid staining using flow cytometry. RESULTS Mechanical stretch with 5333 μ strain for 8 hours at 1 Hz decreased the activity of cultured DRG cells. RSC96 Schwann cell-derived exosomes promoted cell proliferation and significantly inhibited apoptosis and senescence of DRG cells following injury induced by CMS. CONCLUSIONS An in vitro model of DRG cell injury induced by CMS, showed that RSC96 Schwann cell-derived exosomes had a protective effect. The effects of Schwann cell-derived exosomes on peripheral nerve injury, including in stress urinary incontinence, require future in vivo studies.
ISSN:1643-3750
1234-1010
1643-3750
DOI:10.12659/MSM.909509