Loading…

Driving the expression of the Salmonella enterica sv Typhimurium flagellum using flhDC from Escherichia coli results in key regulatory and cellular differences

The flagellar systems of Escherichia coli and Salmonella enterica exhibit a significant level of genetic and functional synteny. Both systems are controlled by the flagellar specific master regulator FlhD 4 C 2 . Since the early days of genetic analyses of flagellar systems it has been known that E....

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2018-11, Vol.8 (1), p.16705-11, Article 16705
Main Authors: Albanna, Ayman, Sim, Martin, Hoskisson, Paul A., Gillespie, Colin, Rao, Christopher V., Aldridge, Phillip D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c511t-bf94956e62f91b11b1ae2bf984f47e5b8cf43999f6909f8295f3db6eb79f811d3
cites cdi_FETCH-LOGICAL-c511t-bf94956e62f91b11b1ae2bf984f47e5b8cf43999f6909f8295f3db6eb79f811d3
container_end_page 11
container_issue 1
container_start_page 16705
container_title Scientific reports
container_volume 8
creator Albanna, Ayman
Sim, Martin
Hoskisson, Paul A.
Gillespie, Colin
Rao, Christopher V.
Aldridge, Phillip D.
description The flagellar systems of Escherichia coli and Salmonella enterica exhibit a significant level of genetic and functional synteny. Both systems are controlled by the flagellar specific master regulator FlhD 4 C 2 . Since the early days of genetic analyses of flagellar systems it has been known that E. coli flhDC can complement a ∆ flhDC mutant in S. enterica . The genomic revolution has identified how genetic changes to transcription factors and/or DNA binding sites can impact the phenotypic outcome across related species. We were therefore interested in asking: using modern tools to interrogate flagellar gene expression and assembly, what would the impact be of replacing the flhDC coding sequences in S. enterica for the E. coli genes at the flhDC S. entercia chromosomal locus? We show that even though all strains created are motile, flagellar gene expression is measurably lower when flhDC EC are present. These changes can be attributed to the impact of FlhD 4 C 2 DNA recognition and the protein-protein interactions required to generate a stable FlhD 4 C 2 complex. Furthermore, our data suggests that in E. coli the internal flagellar FliT regulatory feedback loop has a marked difference with respect to output of the flagellar systems. We argue due diligence is required in making assumptions based on heterologous expression of regulators and that even systems showing significant synteny may not behave in exactly the same manner.
doi_str_mv 10.1038/s41598-018-35005-2
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6232118</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2132250739</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-bf94956e62f91b11b1ae2bf984f47e5b8cf43999f6909f8295f3db6eb79f811d3</originalsourceid><addsrcrecordid>eNp9Uk1v1DAQjRCIVqV_gAOyxIVLij_ibHxBQttSkCpxoJwtJxlvXBx7sZMV-2v4q0x2SykcsCx5Zvzm2c9-RfGS0QtGRfM2V0yqpqSsKYWkVJb8SXHKaYWB4Pzpo_ikOM_5juKQXFVMPS9OBK04rSk7LX5eJrdzYUOmAQj82CbI2cVAoj1Uvhg_xgDeGwJhguQ6Q_KO3O63gxvn5OaRWG82CMBozguR9cPlmtgUR3KVu2HpGZwhXfSOIPvsp0xcIN9gj-lm9maKaU9M6Em30HiTSO-shQShg_yieGaNz3B-v54VXz9c3a4_ljefrz-t39-UnWRsKlurKiVrqLlVrGU4DXAsNpWtViDbprOVUErZWlFlG66kFX1bQ7vCjLFenBXvjrzbuR2h71BtMl5vkxtN2utonP57J7hBb-JO1_jEjDVI8OaeIMXvM-RJjy4vikyAOGfNmeArIZtGIvT1P9C7OKeA8g4oLulKKETxI6pLMecE9uEyjOrFAvpoAY0W0AcLaI5Nrx7LeGj5_eEIEEdAxq2wgfTn7P_Q_gIm7cBQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2132250739</pqid></control><display><type>article</type><title>Driving the expression of the Salmonella enterica sv Typhimurium flagellum using flhDC from Escherichia coli results in key regulatory and cellular differences</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Albanna, Ayman ; Sim, Martin ; Hoskisson, Paul A. ; Gillespie, Colin ; Rao, Christopher V. ; Aldridge, Phillip D.</creator><creatorcontrib>Albanna, Ayman ; Sim, Martin ; Hoskisson, Paul A. ; Gillespie, Colin ; Rao, Christopher V. ; Aldridge, Phillip D.</creatorcontrib><description>The flagellar systems of Escherichia coli and Salmonella enterica exhibit a significant level of genetic and functional synteny. Both systems are controlled by the flagellar specific master regulator FlhD 4 C 2 . Since the early days of genetic analyses of flagellar systems it has been known that E. coli flhDC can complement a ∆ flhDC mutant in S. enterica . The genomic revolution has identified how genetic changes to transcription factors and/or DNA binding sites can impact the phenotypic outcome across related species. We were therefore interested in asking: using modern tools to interrogate flagellar gene expression and assembly, what would the impact be of replacing the flhDC coding sequences in S. enterica for the E. coli genes at the flhDC S. entercia chromosomal locus? We show that even though all strains created are motile, flagellar gene expression is measurably lower when flhDC EC are present. These changes can be attributed to the impact of FlhD 4 C 2 DNA recognition and the protein-protein interactions required to generate a stable FlhD 4 C 2 complex. Furthermore, our data suggests that in E. coli the internal flagellar FliT regulatory feedback loop has a marked difference with respect to output of the flagellar systems. We argue due diligence is required in making assumptions based on heterologous expression of regulators and that even systems showing significant synteny may not behave in exactly the same manner.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-018-35005-2</identifier><identifier>PMID: 30420601</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14/35 ; 14/63 ; 38/5 ; 38/70 ; 42/41 ; 631/326/1320 ; 631/326/325/1506 ; Binding sites ; Deoxyribonucleic acid ; DNA ; E coli ; Escherichia coli ; Flagella ; Gene expression ; Genetic analysis ; Humanities and Social Sciences ; multidisciplinary ; Protein interaction ; Salmonella ; Salmonella enterica ; Science ; Science (multidisciplinary) ; Synteny ; Transcription factors</subject><ispartof>Scientific reports, 2018-11, Vol.8 (1), p.16705-11, Article 16705</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-bf94956e62f91b11b1ae2bf984f47e5b8cf43999f6909f8295f3db6eb79f811d3</citedby><cites>FETCH-LOGICAL-c511t-bf94956e62f91b11b1ae2bf984f47e5b8cf43999f6909f8295f3db6eb79f811d3</cites><orcidid>0000-0003-4332-1640 ; 0000-0001-6488-7593</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2132250739/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2132250739?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25751,27922,27923,37010,37011,44588,53789,53791,74896</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30420601$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Albanna, Ayman</creatorcontrib><creatorcontrib>Sim, Martin</creatorcontrib><creatorcontrib>Hoskisson, Paul A.</creatorcontrib><creatorcontrib>Gillespie, Colin</creatorcontrib><creatorcontrib>Rao, Christopher V.</creatorcontrib><creatorcontrib>Aldridge, Phillip D.</creatorcontrib><title>Driving the expression of the Salmonella enterica sv Typhimurium flagellum using flhDC from Escherichia coli results in key regulatory and cellular differences</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The flagellar systems of Escherichia coli and Salmonella enterica exhibit a significant level of genetic and functional synteny. Both systems are controlled by the flagellar specific master regulator FlhD 4 C 2 . Since the early days of genetic analyses of flagellar systems it has been known that E. coli flhDC can complement a ∆ flhDC mutant in S. enterica . The genomic revolution has identified how genetic changes to transcription factors and/or DNA binding sites can impact the phenotypic outcome across related species. We were therefore interested in asking: using modern tools to interrogate flagellar gene expression and assembly, what would the impact be of replacing the flhDC coding sequences in S. enterica for the E. coli genes at the flhDC S. entercia chromosomal locus? We show that even though all strains created are motile, flagellar gene expression is measurably lower when flhDC EC are present. These changes can be attributed to the impact of FlhD 4 C 2 DNA recognition and the protein-protein interactions required to generate a stable FlhD 4 C 2 complex. Furthermore, our data suggests that in E. coli the internal flagellar FliT regulatory feedback loop has a marked difference with respect to output of the flagellar systems. We argue due diligence is required in making assumptions based on heterologous expression of regulators and that even systems showing significant synteny may not behave in exactly the same manner.</description><subject>14/35</subject><subject>14/63</subject><subject>38/5</subject><subject>38/70</subject><subject>42/41</subject><subject>631/326/1320</subject><subject>631/326/325/1506</subject><subject>Binding sites</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Flagella</subject><subject>Gene expression</subject><subject>Genetic analysis</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Protein interaction</subject><subject>Salmonella</subject><subject>Salmonella enterica</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Synteny</subject><subject>Transcription factors</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9Uk1v1DAQjRCIVqV_gAOyxIVLij_ibHxBQttSkCpxoJwtJxlvXBx7sZMV-2v4q0x2SykcsCx5Zvzm2c9-RfGS0QtGRfM2V0yqpqSsKYWkVJb8SXHKaYWB4Pzpo_ikOM_5juKQXFVMPS9OBK04rSk7LX5eJrdzYUOmAQj82CbI2cVAoj1Uvhg_xgDeGwJhguQ6Q_KO3O63gxvn5OaRWG82CMBozguR9cPlmtgUR3KVu2HpGZwhXfSOIPvsp0xcIN9gj-lm9maKaU9M6Em30HiTSO-shQShg_yieGaNz3B-v54VXz9c3a4_ljefrz-t39-UnWRsKlurKiVrqLlVrGU4DXAsNpWtViDbprOVUErZWlFlG66kFX1bQ7vCjLFenBXvjrzbuR2h71BtMl5vkxtN2utonP57J7hBb-JO1_jEjDVI8OaeIMXvM-RJjy4vikyAOGfNmeArIZtGIvT1P9C7OKeA8g4oLulKKETxI6pLMecE9uEyjOrFAvpoAY0W0AcLaI5Nrx7LeGj5_eEIEEdAxq2wgfTn7P_Q_gIm7cBQ</recordid><startdate>20181112</startdate><enddate>20181112</enddate><creator>Albanna, Ayman</creator><creator>Sim, Martin</creator><creator>Hoskisson, Paul A.</creator><creator>Gillespie, Colin</creator><creator>Rao, Christopher V.</creator><creator>Aldridge, Phillip D.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4332-1640</orcidid><orcidid>https://orcid.org/0000-0001-6488-7593</orcidid></search><sort><creationdate>20181112</creationdate><title>Driving the expression of the Salmonella enterica sv Typhimurium flagellum using flhDC from Escherichia coli results in key regulatory and cellular differences</title><author>Albanna, Ayman ; Sim, Martin ; Hoskisson, Paul A. ; Gillespie, Colin ; Rao, Christopher V. ; Aldridge, Phillip D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-bf94956e62f91b11b1ae2bf984f47e5b8cf43999f6909f8295f3db6eb79f811d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>14/35</topic><topic>14/63</topic><topic>38/5</topic><topic>38/70</topic><topic>42/41</topic><topic>631/326/1320</topic><topic>631/326/325/1506</topic><topic>Binding sites</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Flagella</topic><topic>Gene expression</topic><topic>Genetic analysis</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Protein interaction</topic><topic>Salmonella</topic><topic>Salmonella enterica</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Synteny</topic><topic>Transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Albanna, Ayman</creatorcontrib><creatorcontrib>Sim, Martin</creatorcontrib><creatorcontrib>Hoskisson, Paul A.</creatorcontrib><creatorcontrib>Gillespie, Colin</creatorcontrib><creatorcontrib>Rao, Christopher V.</creatorcontrib><creatorcontrib>Aldridge, Phillip D.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Albanna, Ayman</au><au>Sim, Martin</au><au>Hoskisson, Paul A.</au><au>Gillespie, Colin</au><au>Rao, Christopher V.</au><au>Aldridge, Phillip D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Driving the expression of the Salmonella enterica sv Typhimurium flagellum using flhDC from Escherichia coli results in key regulatory and cellular differences</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2018-11-12</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>16705</spage><epage>11</epage><pages>16705-11</pages><artnum>16705</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The flagellar systems of Escherichia coli and Salmonella enterica exhibit a significant level of genetic and functional synteny. Both systems are controlled by the flagellar specific master regulator FlhD 4 C 2 . Since the early days of genetic analyses of flagellar systems it has been known that E. coli flhDC can complement a ∆ flhDC mutant in S. enterica . The genomic revolution has identified how genetic changes to transcription factors and/or DNA binding sites can impact the phenotypic outcome across related species. We were therefore interested in asking: using modern tools to interrogate flagellar gene expression and assembly, what would the impact be of replacing the flhDC coding sequences in S. enterica for the E. coli genes at the flhDC S. entercia chromosomal locus? We show that even though all strains created are motile, flagellar gene expression is measurably lower when flhDC EC are present. These changes can be attributed to the impact of FlhD 4 C 2 DNA recognition and the protein-protein interactions required to generate a stable FlhD 4 C 2 complex. Furthermore, our data suggests that in E. coli the internal flagellar FliT regulatory feedback loop has a marked difference with respect to output of the flagellar systems. We argue due diligence is required in making assumptions based on heterologous expression of regulators and that even systems showing significant synteny may not behave in exactly the same manner.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30420601</pmid><doi>10.1038/s41598-018-35005-2</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4332-1640</orcidid><orcidid>https://orcid.org/0000-0001-6488-7593</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2018-11, Vol.8 (1), p.16705-11, Article 16705
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6232118
source Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 14/35
14/63
38/5
38/70
42/41
631/326/1320
631/326/325/1506
Binding sites
Deoxyribonucleic acid
DNA
E coli
Escherichia coli
Flagella
Gene expression
Genetic analysis
Humanities and Social Sciences
multidisciplinary
Protein interaction
Salmonella
Salmonella enterica
Science
Science (multidisciplinary)
Synteny
Transcription factors
title Driving the expression of the Salmonella enterica sv Typhimurium flagellum using flhDC from Escherichia coli results in key regulatory and cellular differences
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T22%3A15%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Driving%20the%20expression%20of%20the%20Salmonella%20enterica%20sv%20Typhimurium%20flagellum%20using%20flhDC%20from%20Escherichia%20coli%20results%20in%20key%20regulatory%20and%20cellular%20differences&rft.jtitle=Scientific%20reports&rft.au=Albanna,%20Ayman&rft.date=2018-11-12&rft.volume=8&rft.issue=1&rft.spage=16705&rft.epage=11&rft.pages=16705-11&rft.artnum=16705&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-018-35005-2&rft_dat=%3Cproquest_pubme%3E2132250739%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c511t-bf94956e62f91b11b1ae2bf984f47e5b8cf43999f6909f8295f3db6eb79f811d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2132250739&rft_id=info:pmid/30420601&rfr_iscdi=true