Loading…

Probing cellular mechanics with acoustic force spectroscopy

A large number of studies demonstrate that cell mechanics and pathology are intimately linked. In particular, deformability of red blood cells (RBCs) is key to their function and is dramatically altered in the time course of diseases such as anemia and malaria. Due to the physiological importance of...

Full description

Saved in:
Bibliographic Details
Published in:Molecular biology of the cell 2018-08, Vol.29 (16), p.2005-2011
Main Authors: Sorkin, Raya, Bergamaschi, Giulia, Kamsma, Douwe, Brand, Guy, Dekel, Elya, Ofir-Birin, Yifat, Rudik, Ariel, Gironella, Marta, Ritort, Felix, Regev-Rudzki, Neta, Roos, Wouter H, Wuite, Gijs J L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c435t-cbd30aafbad281c6d75c3ef3e304f998558accc2abfe7781b76c0c709f8b59433
cites cdi_FETCH-LOGICAL-c435t-cbd30aafbad281c6d75c3ef3e304f998558accc2abfe7781b76c0c709f8b59433
container_end_page 2011
container_issue 16
container_start_page 2005
container_title Molecular biology of the cell
container_volume 29
creator Sorkin, Raya
Bergamaschi, Giulia
Kamsma, Douwe
Brand, Guy
Dekel, Elya
Ofir-Birin, Yifat
Rudik, Ariel
Gironella, Marta
Ritort, Felix
Regev-Rudzki, Neta
Roos, Wouter H
Wuite, Gijs J L
description A large number of studies demonstrate that cell mechanics and pathology are intimately linked. In particular, deformability of red blood cells (RBCs) is key to their function and is dramatically altered in the time course of diseases such as anemia and malaria. Due to the physiological importance of cell mechanics, many methods for cell mechanical probing have been developed. While single-cell methods provide very valuable information, they are often technically challenging and lack the high data throughput needed to distinguish differences in heterogeneous populations, while fluid-flow high-throughput methods miss the accuracy to detect subtle differences. Here we present a new method for multiplexed single-cell mechanical probing using acoustic force spectroscopy (AFS). We demonstrate that mechanical differences induced by chemical treatments of known effect can be measured and quantified. Furthermore, we explore the effect of extracellular vesicles (EVs) uptake on RBC mechanics and demonstrate that EVs uptake increases RBC deformability. Our findings demonstrate the ability of AFS to manipulate cells with high stability and precision and pave the way to further new insights into cellular mechanics and mechanobiology in health and disease, as well as potential biomedical applications.
doi_str_mv 10.1091/mbc.E18-03-0154
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6232971</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2057861564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-cbd30aafbad281c6d75c3ef3e304f998558accc2abfe7781b76c0c709f8b59433</originalsourceid><addsrcrecordid>eNpVkctLAzEYxIMotlbP3mSPXrbNc5MgCFLqAwp60HPIfs22K_uoya7S_97U1qKHkITMTJL5IXRJ8JhgTSZ1DuMZUSlmKSaCH6Eh0UynXKjsOK6x0CkRlA_QWQjvGBPOM3mKBlRrKplQQ3Tz4tu8bJYJuKrqK-uT2sHKNiWE5KvsVomFtg9dCUnRenBJWDvofBugXW_O0Ulhq-Au9vMIvd3PXqeP6fz54Wl6N0-BM9GlkC8YtrbI7YIqAtlCCmCuYI5hXmithFAWAKjNCyelIrnMAIPEulC50JyxEbrd5a77vHYLcE3nbWXWvqyt35jWlub_SVOuzLL9NBllVEsSA8guAEIPxjtwHmz3YzxstoNiSQ0TmcYyeq73l_r2o3ehM3UZtiXZxsVGolZIlRGR8Sid7ONjMcG74vA0gs0Wk4mYTMRkMDNbTNFx9fdHB_0vF_YNuOOQag</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2057861564</pqid></control><display><type>article</type><title>Probing cellular mechanics with acoustic force spectroscopy</title><source>PubMed Central</source><creator>Sorkin, Raya ; Bergamaschi, Giulia ; Kamsma, Douwe ; Brand, Guy ; Dekel, Elya ; Ofir-Birin, Yifat ; Rudik, Ariel ; Gironella, Marta ; Ritort, Felix ; Regev-Rudzki, Neta ; Roos, Wouter H ; Wuite, Gijs J L</creator><contributor>Discher, Dennis</contributor><creatorcontrib>Sorkin, Raya ; Bergamaschi, Giulia ; Kamsma, Douwe ; Brand, Guy ; Dekel, Elya ; Ofir-Birin, Yifat ; Rudik, Ariel ; Gironella, Marta ; Ritort, Felix ; Regev-Rudzki, Neta ; Roos, Wouter H ; Wuite, Gijs J L ; Discher, Dennis</creatorcontrib><description>A large number of studies demonstrate that cell mechanics and pathology are intimately linked. In particular, deformability of red blood cells (RBCs) is key to their function and is dramatically altered in the time course of diseases such as anemia and malaria. Due to the physiological importance of cell mechanics, many methods for cell mechanical probing have been developed. While single-cell methods provide very valuable information, they are often technically challenging and lack the high data throughput needed to distinguish differences in heterogeneous populations, while fluid-flow high-throughput methods miss the accuracy to detect subtle differences. Here we present a new method for multiplexed single-cell mechanical probing using acoustic force spectroscopy (AFS). We demonstrate that mechanical differences induced by chemical treatments of known effect can be measured and quantified. Furthermore, we explore the effect of extracellular vesicles (EVs) uptake on RBC mechanics and demonstrate that EVs uptake increases RBC deformability. Our findings demonstrate the ability of AFS to manipulate cells with high stability and precision and pave the way to further new insights into cellular mechanics and mechanobiology in health and disease, as well as potential biomedical applications.</description><identifier>ISSN: 1059-1524</identifier><identifier>EISSN: 1939-4586</identifier><identifier>DOI: 10.1091/mbc.E18-03-0154</identifier><identifier>PMID: 29927358</identifier><language>eng</language><publisher>United States: American Society for Cell Biology</publisher><subject>Acoustics ; Acústica ; Biomechanics ; Biomecànica ; Cell physiology ; Fisiologia cel·lular</subject><ispartof>Molecular biology of the cell, 2018-08, Vol.29 (16), p.2005-2011</ispartof><rights>cc-by-nc-sa (c) Sorkin, Raya et al., 2018 info:eu-repo/semantics/openAccess &lt;a href="http://creativecommons.org/licenses/by-nc-sa/3.0/es"&gt;http://creativecommons.org/licenses/by-nc-sa/3.0/es&lt;/a&gt;</rights><rights>2018 Sorkin, Bergamaschi, “ASCB®,” “The American Society for Cell Biology®,” and “Molecular Biology of the Cell®” are registered trademarks of The American Society for Cell Biology. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-cbd30aafbad281c6d75c3ef3e304f998558accc2abfe7781b76c0c709f8b59433</citedby><cites>FETCH-LOGICAL-c435t-cbd30aafbad281c6d75c3ef3e304f998558accc2abfe7781b76c0c709f8b59433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6232971/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6232971/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29927358$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Discher, Dennis</contributor><creatorcontrib>Sorkin, Raya</creatorcontrib><creatorcontrib>Bergamaschi, Giulia</creatorcontrib><creatorcontrib>Kamsma, Douwe</creatorcontrib><creatorcontrib>Brand, Guy</creatorcontrib><creatorcontrib>Dekel, Elya</creatorcontrib><creatorcontrib>Ofir-Birin, Yifat</creatorcontrib><creatorcontrib>Rudik, Ariel</creatorcontrib><creatorcontrib>Gironella, Marta</creatorcontrib><creatorcontrib>Ritort, Felix</creatorcontrib><creatorcontrib>Regev-Rudzki, Neta</creatorcontrib><creatorcontrib>Roos, Wouter H</creatorcontrib><creatorcontrib>Wuite, Gijs J L</creatorcontrib><title>Probing cellular mechanics with acoustic force spectroscopy</title><title>Molecular biology of the cell</title><addtitle>Mol Biol Cell</addtitle><description>A large number of studies demonstrate that cell mechanics and pathology are intimately linked. In particular, deformability of red blood cells (RBCs) is key to their function and is dramatically altered in the time course of diseases such as anemia and malaria. Due to the physiological importance of cell mechanics, many methods for cell mechanical probing have been developed. While single-cell methods provide very valuable information, they are often technically challenging and lack the high data throughput needed to distinguish differences in heterogeneous populations, while fluid-flow high-throughput methods miss the accuracy to detect subtle differences. Here we present a new method for multiplexed single-cell mechanical probing using acoustic force spectroscopy (AFS). We demonstrate that mechanical differences induced by chemical treatments of known effect can be measured and quantified. Furthermore, we explore the effect of extracellular vesicles (EVs) uptake on RBC mechanics and demonstrate that EVs uptake increases RBC deformability. Our findings demonstrate the ability of AFS to manipulate cells with high stability and precision and pave the way to further new insights into cellular mechanics and mechanobiology in health and disease, as well as potential biomedical applications.</description><subject>Acoustics</subject><subject>Acústica</subject><subject>Biomechanics</subject><subject>Biomecànica</subject><subject>Cell physiology</subject><subject>Fisiologia cel·lular</subject><issn>1059-1524</issn><issn>1939-4586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpVkctLAzEYxIMotlbP3mSPXrbNc5MgCFLqAwp60HPIfs22K_uoya7S_97U1qKHkITMTJL5IXRJ8JhgTSZ1DuMZUSlmKSaCH6Eh0UynXKjsOK6x0CkRlA_QWQjvGBPOM3mKBlRrKplQQ3Tz4tu8bJYJuKrqK-uT2sHKNiWE5KvsVomFtg9dCUnRenBJWDvofBugXW_O0Ulhq-Au9vMIvd3PXqeP6fz54Wl6N0-BM9GlkC8YtrbI7YIqAtlCCmCuYI5hXmithFAWAKjNCyelIrnMAIPEulC50JyxEbrd5a77vHYLcE3nbWXWvqyt35jWlub_SVOuzLL9NBllVEsSA8guAEIPxjtwHmz3YzxstoNiSQ0TmcYyeq73l_r2o3ehM3UZtiXZxsVGolZIlRGR8Sid7ONjMcG74vA0gs0Wk4mYTMRkMDNbTNFx9fdHB_0vF_YNuOOQag</recordid><startdate>20180808</startdate><enddate>20180808</enddate><creator>Sorkin, Raya</creator><creator>Bergamaschi, Giulia</creator><creator>Kamsma, Douwe</creator><creator>Brand, Guy</creator><creator>Dekel, Elya</creator><creator>Ofir-Birin, Yifat</creator><creator>Rudik, Ariel</creator><creator>Gironella, Marta</creator><creator>Ritort, Felix</creator><creator>Regev-Rudzki, Neta</creator><creator>Roos, Wouter H</creator><creator>Wuite, Gijs J L</creator><general>American Society for Cell Biology</general><general>The American Society for Cell Biology</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>XX2</scope><scope>5PM</scope></search><sort><creationdate>20180808</creationdate><title>Probing cellular mechanics with acoustic force spectroscopy</title><author>Sorkin, Raya ; Bergamaschi, Giulia ; Kamsma, Douwe ; Brand, Guy ; Dekel, Elya ; Ofir-Birin, Yifat ; Rudik, Ariel ; Gironella, Marta ; Ritort, Felix ; Regev-Rudzki, Neta ; Roos, Wouter H ; Wuite, Gijs J L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-cbd30aafbad281c6d75c3ef3e304f998558accc2abfe7781b76c0c709f8b59433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acoustics</topic><topic>Acústica</topic><topic>Biomechanics</topic><topic>Biomecànica</topic><topic>Cell physiology</topic><topic>Fisiologia cel·lular</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sorkin, Raya</creatorcontrib><creatorcontrib>Bergamaschi, Giulia</creatorcontrib><creatorcontrib>Kamsma, Douwe</creatorcontrib><creatorcontrib>Brand, Guy</creatorcontrib><creatorcontrib>Dekel, Elya</creatorcontrib><creatorcontrib>Ofir-Birin, Yifat</creatorcontrib><creatorcontrib>Rudik, Ariel</creatorcontrib><creatorcontrib>Gironella, Marta</creatorcontrib><creatorcontrib>Ritort, Felix</creatorcontrib><creatorcontrib>Regev-Rudzki, Neta</creatorcontrib><creatorcontrib>Roos, Wouter H</creatorcontrib><creatorcontrib>Wuite, Gijs J L</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Recercat</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular biology of the cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sorkin, Raya</au><au>Bergamaschi, Giulia</au><au>Kamsma, Douwe</au><au>Brand, Guy</au><au>Dekel, Elya</au><au>Ofir-Birin, Yifat</au><au>Rudik, Ariel</au><au>Gironella, Marta</au><au>Ritort, Felix</au><au>Regev-Rudzki, Neta</au><au>Roos, Wouter H</au><au>Wuite, Gijs J L</au><au>Discher, Dennis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing cellular mechanics with acoustic force spectroscopy</atitle><jtitle>Molecular biology of the cell</jtitle><addtitle>Mol Biol Cell</addtitle><date>2018-08-08</date><risdate>2018</risdate><volume>29</volume><issue>16</issue><spage>2005</spage><epage>2011</epage><pages>2005-2011</pages><issn>1059-1524</issn><eissn>1939-4586</eissn><abstract>A large number of studies demonstrate that cell mechanics and pathology are intimately linked. In particular, deformability of red blood cells (RBCs) is key to their function and is dramatically altered in the time course of diseases such as anemia and malaria. Due to the physiological importance of cell mechanics, many methods for cell mechanical probing have been developed. While single-cell methods provide very valuable information, they are often technically challenging and lack the high data throughput needed to distinguish differences in heterogeneous populations, while fluid-flow high-throughput methods miss the accuracy to detect subtle differences. Here we present a new method for multiplexed single-cell mechanical probing using acoustic force spectroscopy (AFS). We demonstrate that mechanical differences induced by chemical treatments of known effect can be measured and quantified. Furthermore, we explore the effect of extracellular vesicles (EVs) uptake on RBC mechanics and demonstrate that EVs uptake increases RBC deformability. Our findings demonstrate the ability of AFS to manipulate cells with high stability and precision and pave the way to further new insights into cellular mechanics and mechanobiology in health and disease, as well as potential biomedical applications.</abstract><cop>United States</cop><pub>American Society for Cell Biology</pub><pmid>29927358</pmid><doi>10.1091/mbc.E18-03-0154</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1059-1524
ispartof Molecular biology of the cell, 2018-08, Vol.29 (16), p.2005-2011
issn 1059-1524
1939-4586
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6232971
source PubMed Central
subjects Acoustics
Acústica
Biomechanics
Biomecànica
Cell physiology
Fisiologia cel·lular
title Probing cellular mechanics with acoustic force spectroscopy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A16%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20cellular%20mechanics%20with%20acoustic%20force%20spectroscopy&rft.jtitle=Molecular%20biology%20of%20the%20cell&rft.au=Sorkin,%20Raya&rft.date=2018-08-08&rft.volume=29&rft.issue=16&rft.spage=2005&rft.epage=2011&rft.pages=2005-2011&rft.issn=1059-1524&rft.eissn=1939-4586&rft_id=info:doi/10.1091/mbc.E18-03-0154&rft_dat=%3Cproquest_pubme%3E2057861564%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c435t-cbd30aafbad281c6d75c3ef3e304f998558accc2abfe7781b76c0c709f8b59433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2057861564&rft_id=info:pmid/29927358&rfr_iscdi=true