Loading…
Probing cellular mechanics with acoustic force spectroscopy
A large number of studies demonstrate that cell mechanics and pathology are intimately linked. In particular, deformability of red blood cells (RBCs) is key to their function and is dramatically altered in the time course of diseases such as anemia and malaria. Due to the physiological importance of...
Saved in:
Published in: | Molecular biology of the cell 2018-08, Vol.29 (16), p.2005-2011 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c435t-cbd30aafbad281c6d75c3ef3e304f998558accc2abfe7781b76c0c709f8b59433 |
---|---|
cites | cdi_FETCH-LOGICAL-c435t-cbd30aafbad281c6d75c3ef3e304f998558accc2abfe7781b76c0c709f8b59433 |
container_end_page | 2011 |
container_issue | 16 |
container_start_page | 2005 |
container_title | Molecular biology of the cell |
container_volume | 29 |
creator | Sorkin, Raya Bergamaschi, Giulia Kamsma, Douwe Brand, Guy Dekel, Elya Ofir-Birin, Yifat Rudik, Ariel Gironella, Marta Ritort, Felix Regev-Rudzki, Neta Roos, Wouter H Wuite, Gijs J L |
description | A large number of studies demonstrate that cell mechanics and pathology are intimately linked. In particular, deformability of red blood cells (RBCs) is key to their function and is dramatically altered in the time course of diseases such as anemia and malaria. Due to the physiological importance of cell mechanics, many methods for cell mechanical probing have been developed. While single-cell methods provide very valuable information, they are often technically challenging and lack the high data throughput needed to distinguish differences in heterogeneous populations, while fluid-flow high-throughput methods miss the accuracy to detect subtle differences. Here we present a new method for multiplexed single-cell mechanical probing using acoustic force spectroscopy (AFS). We demonstrate that mechanical differences induced by chemical treatments of known effect can be measured and quantified. Furthermore, we explore the effect of extracellular vesicles (EVs) uptake on RBC mechanics and demonstrate that EVs uptake increases RBC deformability. Our findings demonstrate the ability of AFS to manipulate cells with high stability and precision and pave the way to further new insights into cellular mechanics and mechanobiology in health and disease, as well as potential biomedical applications. |
doi_str_mv | 10.1091/mbc.E18-03-0154 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6232971</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2057861564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-cbd30aafbad281c6d75c3ef3e304f998558accc2abfe7781b76c0c709f8b59433</originalsourceid><addsrcrecordid>eNpVkctLAzEYxIMotlbP3mSPXrbNc5MgCFLqAwp60HPIfs22K_uoya7S_97U1qKHkITMTJL5IXRJ8JhgTSZ1DuMZUSlmKSaCH6Eh0UynXKjsOK6x0CkRlA_QWQjvGBPOM3mKBlRrKplQQ3Tz4tu8bJYJuKrqK-uT2sHKNiWE5KvsVomFtg9dCUnRenBJWDvofBugXW_O0Ulhq-Au9vMIvd3PXqeP6fz54Wl6N0-BM9GlkC8YtrbI7YIqAtlCCmCuYI5hXmithFAWAKjNCyelIrnMAIPEulC50JyxEbrd5a77vHYLcE3nbWXWvqyt35jWlub_SVOuzLL9NBllVEsSA8guAEIPxjtwHmz3YzxstoNiSQ0TmcYyeq73l_r2o3ehM3UZtiXZxsVGolZIlRGR8Sid7ONjMcG74vA0gs0Wk4mYTMRkMDNbTNFx9fdHB_0vF_YNuOOQag</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2057861564</pqid></control><display><type>article</type><title>Probing cellular mechanics with acoustic force spectroscopy</title><source>PubMed Central</source><creator>Sorkin, Raya ; Bergamaschi, Giulia ; Kamsma, Douwe ; Brand, Guy ; Dekel, Elya ; Ofir-Birin, Yifat ; Rudik, Ariel ; Gironella, Marta ; Ritort, Felix ; Regev-Rudzki, Neta ; Roos, Wouter H ; Wuite, Gijs J L</creator><contributor>Discher, Dennis</contributor><creatorcontrib>Sorkin, Raya ; Bergamaschi, Giulia ; Kamsma, Douwe ; Brand, Guy ; Dekel, Elya ; Ofir-Birin, Yifat ; Rudik, Ariel ; Gironella, Marta ; Ritort, Felix ; Regev-Rudzki, Neta ; Roos, Wouter H ; Wuite, Gijs J L ; Discher, Dennis</creatorcontrib><description>A large number of studies demonstrate that cell mechanics and pathology are intimately linked. In particular, deformability of red blood cells (RBCs) is key to their function and is dramatically altered in the time course of diseases such as anemia and malaria. Due to the physiological importance of cell mechanics, many methods for cell mechanical probing have been developed. While single-cell methods provide very valuable information, they are often technically challenging and lack the high data throughput needed to distinguish differences in heterogeneous populations, while fluid-flow high-throughput methods miss the accuracy to detect subtle differences. Here we present a new method for multiplexed single-cell mechanical probing using acoustic force spectroscopy (AFS). We demonstrate that mechanical differences induced by chemical treatments of known effect can be measured and quantified. Furthermore, we explore the effect of extracellular vesicles (EVs) uptake on RBC mechanics and demonstrate that EVs uptake increases RBC deformability. Our findings demonstrate the ability of AFS to manipulate cells with high stability and precision and pave the way to further new insights into cellular mechanics and mechanobiology in health and disease, as well as potential biomedical applications.</description><identifier>ISSN: 1059-1524</identifier><identifier>EISSN: 1939-4586</identifier><identifier>DOI: 10.1091/mbc.E18-03-0154</identifier><identifier>PMID: 29927358</identifier><language>eng</language><publisher>United States: American Society for Cell Biology</publisher><subject>Acoustics ; Acústica ; Biomechanics ; Biomecànica ; Cell physiology ; Fisiologia cel·lular</subject><ispartof>Molecular biology of the cell, 2018-08, Vol.29 (16), p.2005-2011</ispartof><rights>cc-by-nc-sa (c) Sorkin, Raya et al., 2018 info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-sa/3.0/es">http://creativecommons.org/licenses/by-nc-sa/3.0/es</a></rights><rights>2018 Sorkin, Bergamaschi, “ASCB®,” “The American Society for Cell Biology®,” and “Molecular Biology of the Cell®” are registered trademarks of The American Society for Cell Biology. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-cbd30aafbad281c6d75c3ef3e304f998558accc2abfe7781b76c0c709f8b59433</citedby><cites>FETCH-LOGICAL-c435t-cbd30aafbad281c6d75c3ef3e304f998558accc2abfe7781b76c0c709f8b59433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6232971/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6232971/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29927358$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Discher, Dennis</contributor><creatorcontrib>Sorkin, Raya</creatorcontrib><creatorcontrib>Bergamaschi, Giulia</creatorcontrib><creatorcontrib>Kamsma, Douwe</creatorcontrib><creatorcontrib>Brand, Guy</creatorcontrib><creatorcontrib>Dekel, Elya</creatorcontrib><creatorcontrib>Ofir-Birin, Yifat</creatorcontrib><creatorcontrib>Rudik, Ariel</creatorcontrib><creatorcontrib>Gironella, Marta</creatorcontrib><creatorcontrib>Ritort, Felix</creatorcontrib><creatorcontrib>Regev-Rudzki, Neta</creatorcontrib><creatorcontrib>Roos, Wouter H</creatorcontrib><creatorcontrib>Wuite, Gijs J L</creatorcontrib><title>Probing cellular mechanics with acoustic force spectroscopy</title><title>Molecular biology of the cell</title><addtitle>Mol Biol Cell</addtitle><description>A large number of studies demonstrate that cell mechanics and pathology are intimately linked. In particular, deformability of red blood cells (RBCs) is key to their function and is dramatically altered in the time course of diseases such as anemia and malaria. Due to the physiological importance of cell mechanics, many methods for cell mechanical probing have been developed. While single-cell methods provide very valuable information, they are often technically challenging and lack the high data throughput needed to distinguish differences in heterogeneous populations, while fluid-flow high-throughput methods miss the accuracy to detect subtle differences. Here we present a new method for multiplexed single-cell mechanical probing using acoustic force spectroscopy (AFS). We demonstrate that mechanical differences induced by chemical treatments of known effect can be measured and quantified. Furthermore, we explore the effect of extracellular vesicles (EVs) uptake on RBC mechanics and demonstrate that EVs uptake increases RBC deformability. Our findings demonstrate the ability of AFS to manipulate cells with high stability and precision and pave the way to further new insights into cellular mechanics and mechanobiology in health and disease, as well as potential biomedical applications.</description><subject>Acoustics</subject><subject>Acústica</subject><subject>Biomechanics</subject><subject>Biomecànica</subject><subject>Cell physiology</subject><subject>Fisiologia cel·lular</subject><issn>1059-1524</issn><issn>1939-4586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpVkctLAzEYxIMotlbP3mSPXrbNc5MgCFLqAwp60HPIfs22K_uoya7S_97U1qKHkITMTJL5IXRJ8JhgTSZ1DuMZUSlmKSaCH6Eh0UynXKjsOK6x0CkRlA_QWQjvGBPOM3mKBlRrKplQQ3Tz4tu8bJYJuKrqK-uT2sHKNiWE5KvsVomFtg9dCUnRenBJWDvofBugXW_O0Ulhq-Au9vMIvd3PXqeP6fz54Wl6N0-BM9GlkC8YtrbI7YIqAtlCCmCuYI5hXmithFAWAKjNCyelIrnMAIPEulC50JyxEbrd5a77vHYLcE3nbWXWvqyt35jWlub_SVOuzLL9NBllVEsSA8guAEIPxjtwHmz3YzxstoNiSQ0TmcYyeq73l_r2o3ehM3UZtiXZxsVGolZIlRGR8Sid7ONjMcG74vA0gs0Wk4mYTMRkMDNbTNFx9fdHB_0vF_YNuOOQag</recordid><startdate>20180808</startdate><enddate>20180808</enddate><creator>Sorkin, Raya</creator><creator>Bergamaschi, Giulia</creator><creator>Kamsma, Douwe</creator><creator>Brand, Guy</creator><creator>Dekel, Elya</creator><creator>Ofir-Birin, Yifat</creator><creator>Rudik, Ariel</creator><creator>Gironella, Marta</creator><creator>Ritort, Felix</creator><creator>Regev-Rudzki, Neta</creator><creator>Roos, Wouter H</creator><creator>Wuite, Gijs J L</creator><general>American Society for Cell Biology</general><general>The American Society for Cell Biology</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>XX2</scope><scope>5PM</scope></search><sort><creationdate>20180808</creationdate><title>Probing cellular mechanics with acoustic force spectroscopy</title><author>Sorkin, Raya ; Bergamaschi, Giulia ; Kamsma, Douwe ; Brand, Guy ; Dekel, Elya ; Ofir-Birin, Yifat ; Rudik, Ariel ; Gironella, Marta ; Ritort, Felix ; Regev-Rudzki, Neta ; Roos, Wouter H ; Wuite, Gijs J L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-cbd30aafbad281c6d75c3ef3e304f998558accc2abfe7781b76c0c709f8b59433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acoustics</topic><topic>Acústica</topic><topic>Biomechanics</topic><topic>Biomecànica</topic><topic>Cell physiology</topic><topic>Fisiologia cel·lular</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sorkin, Raya</creatorcontrib><creatorcontrib>Bergamaschi, Giulia</creatorcontrib><creatorcontrib>Kamsma, Douwe</creatorcontrib><creatorcontrib>Brand, Guy</creatorcontrib><creatorcontrib>Dekel, Elya</creatorcontrib><creatorcontrib>Ofir-Birin, Yifat</creatorcontrib><creatorcontrib>Rudik, Ariel</creatorcontrib><creatorcontrib>Gironella, Marta</creatorcontrib><creatorcontrib>Ritort, Felix</creatorcontrib><creatorcontrib>Regev-Rudzki, Neta</creatorcontrib><creatorcontrib>Roos, Wouter H</creatorcontrib><creatorcontrib>Wuite, Gijs J L</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Recercat</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular biology of the cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sorkin, Raya</au><au>Bergamaschi, Giulia</au><au>Kamsma, Douwe</au><au>Brand, Guy</au><au>Dekel, Elya</au><au>Ofir-Birin, Yifat</au><au>Rudik, Ariel</au><au>Gironella, Marta</au><au>Ritort, Felix</au><au>Regev-Rudzki, Neta</au><au>Roos, Wouter H</au><au>Wuite, Gijs J L</au><au>Discher, Dennis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing cellular mechanics with acoustic force spectroscopy</atitle><jtitle>Molecular biology of the cell</jtitle><addtitle>Mol Biol Cell</addtitle><date>2018-08-08</date><risdate>2018</risdate><volume>29</volume><issue>16</issue><spage>2005</spage><epage>2011</epage><pages>2005-2011</pages><issn>1059-1524</issn><eissn>1939-4586</eissn><abstract>A large number of studies demonstrate that cell mechanics and pathology are intimately linked. In particular, deformability of red blood cells (RBCs) is key to their function and is dramatically altered in the time course of diseases such as anemia and malaria. Due to the physiological importance of cell mechanics, many methods for cell mechanical probing have been developed. While single-cell methods provide very valuable information, they are often technically challenging and lack the high data throughput needed to distinguish differences in heterogeneous populations, while fluid-flow high-throughput methods miss the accuracy to detect subtle differences. Here we present a new method for multiplexed single-cell mechanical probing using acoustic force spectroscopy (AFS). We demonstrate that mechanical differences induced by chemical treatments of known effect can be measured and quantified. Furthermore, we explore the effect of extracellular vesicles (EVs) uptake on RBC mechanics and demonstrate that EVs uptake increases RBC deformability. Our findings demonstrate the ability of AFS to manipulate cells with high stability and precision and pave the way to further new insights into cellular mechanics and mechanobiology in health and disease, as well as potential biomedical applications.</abstract><cop>United States</cop><pub>American Society for Cell Biology</pub><pmid>29927358</pmid><doi>10.1091/mbc.E18-03-0154</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1059-1524 |
ispartof | Molecular biology of the cell, 2018-08, Vol.29 (16), p.2005-2011 |
issn | 1059-1524 1939-4586 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6232971 |
source | PubMed Central |
subjects | Acoustics Acústica Biomechanics Biomecànica Cell physiology Fisiologia cel·lular |
title | Probing cellular mechanics with acoustic force spectroscopy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A16%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20cellular%20mechanics%20with%20acoustic%20force%20spectroscopy&rft.jtitle=Molecular%20biology%20of%20the%20cell&rft.au=Sorkin,%20Raya&rft.date=2018-08-08&rft.volume=29&rft.issue=16&rft.spage=2005&rft.epage=2011&rft.pages=2005-2011&rft.issn=1059-1524&rft.eissn=1939-4586&rft_id=info:doi/10.1091/mbc.E18-03-0154&rft_dat=%3Cproquest_pubme%3E2057861564%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c435t-cbd30aafbad281c6d75c3ef3e304f998558accc2abfe7781b76c0c709f8b59433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2057861564&rft_id=info:pmid/29927358&rfr_iscdi=true |