Loading…

LATS1 and LATS2 suppress breast cancer progression by maintaining cell identity and metabolic state

Deregulated activity of LArge Tumor Suppressor (LATS) tumor suppressors has broad implications on cellular and tissue homeostasis. We examined the consequences of down-regulation of either LATS1 or LATS2 in breast cancer. Consistent with their proposed tumor suppressive roles, expression of both par...

Full description

Saved in:
Bibliographic Details
Published in:Life science alliance 2018-10, Vol.1 (5), p.e201800171-e201800171
Main Authors: Furth, Noa, Pateras, Ioannis S, Rotkopf, Ron, Vlachou, Vassiliki, Rivkin, Irina, Schmitt, Ina, Bakaev, Deborah, Gershoni, Anat, Ainbinder, Elena, Leshkowitz, Dena, Johnson, Randy L, Gorgoulis, Vassilis G, Oren, Moshe, Aylon, Yael
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Deregulated activity of LArge Tumor Suppressor (LATS) tumor suppressors has broad implications on cellular and tissue homeostasis. We examined the consequences of down-regulation of either LATS1 or LATS2 in breast cancer. Consistent with their proposed tumor suppressive roles, expression of both paralogs was significantly down-regulated in human breast cancer, and loss of either paralog accelerated mammary tumorigenesis in mice. However, each paralog had a distinct impact on breast cancer. Thus, LATS2 depletion in luminal B tumors resulted in metabolic rewiring, with increased glycolysis and reduced peroxisome proliferator-activated receptor γ (PPARγ) signaling. Furthermore, pharmacological activation of PPARγ elicited LATS2-dependent death in luminal B-derived cells. In contrast, LATS1 depletion augmented cancer cell plasticity, skewing luminal B tumors towards increased expression of basal-like features, in association with increased resistance to hormone therapy. Hence, these two closely related paralogs play distinct roles in protection against breast cancer; tumors with reduced expression of either LATS1 or LATS2 may rewire signaling networks differently and thus respond differently to anticancer treatments.
ISSN:2575-1077
2575-1077
DOI:10.26508/lsa.201800171