Loading…

Glycine decarboxylase deficiency-induced motor dysfunction in zebrafish is rescued by counterbalancing glycine synaptic level

Glycine encephalopathy (GE), or nonketotic hyperglycinemia (NKH), is a rare recessive genetic disease caused by defective glycine cleavage and characterized by increased accumulation of glycine in all tissues. Here, based on new case reports of GLDC loss-of-function mutations in GE patients, we aime...

Full description

Saved in:
Bibliographic Details
Published in:JCI insight 2018-11, Vol.3 (21)
Main Authors: Riché, Raphaëlle, Liao, Meijiang, Pena, Izabella A, Leung, Kit-Yi, Lepage, Nathalie, Greene, Nicolas DE, Sarafoglou, Kyriakie, Schimmenti, Lisa A, Drapeau, Pierre, Samarut, Éric
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Glycine encephalopathy (GE), or nonketotic hyperglycinemia (NKH), is a rare recessive genetic disease caused by defective glycine cleavage and characterized by increased accumulation of glycine in all tissues. Here, based on new case reports of GLDC loss-of-function mutations in GE patients, we aimed to generate a zebrafish model of severe GE in order to unravel the molecular mechanism of the disease. Using CRISPR/Cas9, we knocked out the gldc gene and showed that gldc-/- fish recapitulate GE on a molecular level and present a motor phenotype reminiscent of severe GE symptoms. The molecular characterization of gldc-/- mutants showed a broad metabolic disturbance affecting amino acids and neurotransmitters other than glycine, with lactic acidosis at stages preceding death. Although a transient imbalance was found in cell proliferation in the brain of gldc-/- zebrafish, the main brain networks were not affected, thus suggesting that GE pathogenicity is mainly due to metabolic defects. We confirmed that the gldc-/- hypotonic phenotype is due to NMDA and glycine receptor overactivation, and demonstrated that gldc-/- larvae depict exacerbated hyperglycinemia at these synapses. Remarkably, we were able to rescue the motor dysfunction of gldc-/- larvae by counterbalancing pharmacologically or genetically the level of glycine at the synapse.
ISSN:2379-3708
2379-3708
DOI:10.1172/jci.insight.124642