Loading…

Collagen density modulates triple-negative breast cancer cell metabolism through adhesion-mediated contractility

Extracellular matrix (ECM) mechanical properties upregulate cancer invasion, cell contractility, and focal adhesion formation. Alteration in energy metabolism is a known characteristic of cancer cells (i.e., Warburg effect) and modulates cell invasion. There is little evidence to show if collagen de...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2018-11, Vol.8 (1), p.17094-11, Article 17094
Main Authors: Mah, Emma J., Lefebvre, Austin E. Y. T., McGahey, Gabrielle E., Yee, Albert F., Digman, Michelle A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c474t-6efc427ba1d6276814c7157c150a1d1dacb909be1a11e47651514673841397293
cites cdi_FETCH-LOGICAL-c474t-6efc427ba1d6276814c7157c150a1d1dacb909be1a11e47651514673841397293
container_end_page 11
container_issue 1
container_start_page 17094
container_title Scientific reports
container_volume 8
creator Mah, Emma J.
Lefebvre, Austin E. Y. T.
McGahey, Gabrielle E.
Yee, Albert F.
Digman, Michelle A.
description Extracellular matrix (ECM) mechanical properties upregulate cancer invasion, cell contractility, and focal adhesion formation. Alteration in energy metabolism is a known characteristic of cancer cells (i.e., Warburg effect) and modulates cell invasion. There is little evidence to show if collagen density can alter cancer cell metabolism. We investigated changes in energy metabolism due to collagen density in five breast cell lines by measuring the fluorescence lifetime of NADH. We found that only triple-negative breast cancer cells, MDA-MB231 and MDA-MB468 cells, had an increased population of bound NADH, indicating an oxidative phosphorylation (OXPHOS) signature, as collagen density decreased. When inhibiting ROCK and cell contractility, MDA-MB231 cells on glass shifted from glycolysis (GLY) to OXPHOS, confirming the intricate relationship between mechanosensing and metabolism. MCF10A cells showed less significant changes in metabolism, shifting towards GLY as collagen density decreased. The MCF-7 and T-47D, less invasive breast cancer cells, compared to the MDA-MB231 and MDA-MB468 cells, showed no changes regardless of substrate. In addition, OXPHOS or GLY inhibitors in MDA-MB231 cells showed dramatic shifts from OXPHOS to GLY or vice versa . These results provide an important link between cellular metabolism, contractility, and collagen density in human breast cancer.
doi_str_mv 10.1038/s41598-018-35381-9
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6244401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2136225907</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-6efc427ba1d6276814c7157c150a1d1dacb909be1a11e47651514673841397293</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxSMEolXpF-gBWeLCJeDxnyS-IKEVLUiVuNCz5TizWVeOvdhOpX57vN1SCgd8seX5-c08v6a5APoBKB8-ZgFSDS2FoeWSD9CqF80po0K2jDP28tn5pDnP-ZbWJZkSoF43J7zWlBD0tNlvovdmxkAmDNmVe7LEafWmYCYlub3HNuBsirtDMiY0uRBrgsVELHpPFixmjN7lhZRdiuu8I2baYXYxtAtOrupMxMZQkrHF-ar_pnm1NT7j-eN-1txcfvmx-dpef7_6tvl83VrRi9J2uLWC9aOBqWN9N4CwPcjegqT1CiZjR0XViGAAUPSdBAmi6_kggKueKX7WfDrq7texTmLxMIPX--QWk-51NE7_XQlup-d4pzsm6s9AFXj_KJDizxVz0YvLB9MmYFyzZsA7KQcxiIq--we9jWsK1d4DxZhUtK8UO1I2xZwTbp-GAaoPmepjprpmqh8y1Qcbb5_beHryO8EK8COQaynMmP70_o_sLz7vrm0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2136225907</pqid></control><display><type>article</type><title>Collagen density modulates triple-negative breast cancer cell metabolism through adhesion-mediated contractility</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><source>Full-Text Journals in Chemistry (Open access)</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Mah, Emma J. ; Lefebvre, Austin E. Y. T. ; McGahey, Gabrielle E. ; Yee, Albert F. ; Digman, Michelle A.</creator><creatorcontrib>Mah, Emma J. ; Lefebvre, Austin E. Y. T. ; McGahey, Gabrielle E. ; Yee, Albert F. ; Digman, Michelle A.</creatorcontrib><description>Extracellular matrix (ECM) mechanical properties upregulate cancer invasion, cell contractility, and focal adhesion formation. Alteration in energy metabolism is a known characteristic of cancer cells (i.e., Warburg effect) and modulates cell invasion. There is little evidence to show if collagen density can alter cancer cell metabolism. We investigated changes in energy metabolism due to collagen density in five breast cell lines by measuring the fluorescence lifetime of NADH. We found that only triple-negative breast cancer cells, MDA-MB231 and MDA-MB468 cells, had an increased population of bound NADH, indicating an oxidative phosphorylation (OXPHOS) signature, as collagen density decreased. When inhibiting ROCK and cell contractility, MDA-MB231 cells on glass shifted from glycolysis (GLY) to OXPHOS, confirming the intricate relationship between mechanosensing and metabolism. MCF10A cells showed less significant changes in metabolism, shifting towards GLY as collagen density decreased. The MCF-7 and T-47D, less invasive breast cancer cells, compared to the MDA-MB231 and MDA-MB468 cells, showed no changes regardless of substrate. In addition, OXPHOS or GLY inhibitors in MDA-MB231 cells showed dramatic shifts from OXPHOS to GLY or vice versa . These results provide an important link between cellular metabolism, contractility, and collagen density in human breast cancer.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-018-35381-9</identifier><identifier>PMID: 30459440</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/106 ; 14/10 ; 14/19 ; 14/69 ; 140/125 ; 631/57/2267 ; 639/166/985 ; Adhesion ; Breast cancer ; Collagen ; Contractility ; Energy metabolism ; Extracellular matrix ; Glycolysis ; Humanities and Social Sciences ; Invasiveness ; Mechanical properties ; Metabolism ; multidisciplinary ; NADH ; Oxidative phosphorylation ; Phosphorylation ; Science ; Science (multidisciplinary)</subject><ispartof>Scientific reports, 2018-11, Vol.8 (1), p.17094-11, Article 17094</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-6efc427ba1d6276814c7157c150a1d1dacb909be1a11e47651514673841397293</citedby><cites>FETCH-LOGICAL-c474t-6efc427ba1d6276814c7157c150a1d1dacb909be1a11e47651514673841397293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2136225907/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2136225907?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53770,53772,74873</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30459440$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mah, Emma J.</creatorcontrib><creatorcontrib>Lefebvre, Austin E. Y. T.</creatorcontrib><creatorcontrib>McGahey, Gabrielle E.</creatorcontrib><creatorcontrib>Yee, Albert F.</creatorcontrib><creatorcontrib>Digman, Michelle A.</creatorcontrib><title>Collagen density modulates triple-negative breast cancer cell metabolism through adhesion-mediated contractility</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Extracellular matrix (ECM) mechanical properties upregulate cancer invasion, cell contractility, and focal adhesion formation. Alteration in energy metabolism is a known characteristic of cancer cells (i.e., Warburg effect) and modulates cell invasion. There is little evidence to show if collagen density can alter cancer cell metabolism. We investigated changes in energy metabolism due to collagen density in five breast cell lines by measuring the fluorescence lifetime of NADH. We found that only triple-negative breast cancer cells, MDA-MB231 and MDA-MB468 cells, had an increased population of bound NADH, indicating an oxidative phosphorylation (OXPHOS) signature, as collagen density decreased. When inhibiting ROCK and cell contractility, MDA-MB231 cells on glass shifted from glycolysis (GLY) to OXPHOS, confirming the intricate relationship between mechanosensing and metabolism. MCF10A cells showed less significant changes in metabolism, shifting towards GLY as collagen density decreased. The MCF-7 and T-47D, less invasive breast cancer cells, compared to the MDA-MB231 and MDA-MB468 cells, showed no changes regardless of substrate. In addition, OXPHOS or GLY inhibitors in MDA-MB231 cells showed dramatic shifts from OXPHOS to GLY or vice versa . These results provide an important link between cellular metabolism, contractility, and collagen density in human breast cancer.</description><subject>13/106</subject><subject>14/10</subject><subject>14/19</subject><subject>14/69</subject><subject>140/125</subject><subject>631/57/2267</subject><subject>639/166/985</subject><subject>Adhesion</subject><subject>Breast cancer</subject><subject>Collagen</subject><subject>Contractility</subject><subject>Energy metabolism</subject><subject>Extracellular matrix</subject><subject>Glycolysis</subject><subject>Humanities and Social Sciences</subject><subject>Invasiveness</subject><subject>Mechanical properties</subject><subject>Metabolism</subject><subject>multidisciplinary</subject><subject>NADH</subject><subject>Oxidative phosphorylation</subject><subject>Phosphorylation</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kU9v1DAQxSMEolXpF-gBWeLCJeDxnyS-IKEVLUiVuNCz5TizWVeOvdhOpX57vN1SCgd8seX5-c08v6a5APoBKB8-ZgFSDS2FoeWSD9CqF80po0K2jDP28tn5pDnP-ZbWJZkSoF43J7zWlBD0tNlvovdmxkAmDNmVe7LEafWmYCYlub3HNuBsirtDMiY0uRBrgsVELHpPFixmjN7lhZRdiuu8I2baYXYxtAtOrupMxMZQkrHF-ar_pnm1NT7j-eN-1txcfvmx-dpef7_6tvl83VrRi9J2uLWC9aOBqWN9N4CwPcjegqT1CiZjR0XViGAAUPSdBAmi6_kggKueKX7WfDrq7texTmLxMIPX--QWk-51NE7_XQlup-d4pzsm6s9AFXj_KJDizxVz0YvLB9MmYFyzZsA7KQcxiIq--we9jWsK1d4DxZhUtK8UO1I2xZwTbp-GAaoPmepjprpmqh8y1Qcbb5_beHryO8EK8COQaynMmP70_o_sLz7vrm0</recordid><startdate>20181120</startdate><enddate>20181120</enddate><creator>Mah, Emma J.</creator><creator>Lefebvre, Austin E. Y. T.</creator><creator>McGahey, Gabrielle E.</creator><creator>Yee, Albert F.</creator><creator>Digman, Michelle A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20181120</creationdate><title>Collagen density modulates triple-negative breast cancer cell metabolism through adhesion-mediated contractility</title><author>Mah, Emma J. ; Lefebvre, Austin E. Y. T. ; McGahey, Gabrielle E. ; Yee, Albert F. ; Digman, Michelle A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-6efc427ba1d6276814c7157c150a1d1dacb909be1a11e47651514673841397293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>13/106</topic><topic>14/10</topic><topic>14/19</topic><topic>14/69</topic><topic>140/125</topic><topic>631/57/2267</topic><topic>639/166/985</topic><topic>Adhesion</topic><topic>Breast cancer</topic><topic>Collagen</topic><topic>Contractility</topic><topic>Energy metabolism</topic><topic>Extracellular matrix</topic><topic>Glycolysis</topic><topic>Humanities and Social Sciences</topic><topic>Invasiveness</topic><topic>Mechanical properties</topic><topic>Metabolism</topic><topic>multidisciplinary</topic><topic>NADH</topic><topic>Oxidative phosphorylation</topic><topic>Phosphorylation</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mah, Emma J.</creatorcontrib><creatorcontrib>Lefebvre, Austin E. Y. T.</creatorcontrib><creatorcontrib>McGahey, Gabrielle E.</creatorcontrib><creatorcontrib>Yee, Albert F.</creatorcontrib><creatorcontrib>Digman, Michelle A.</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mah, Emma J.</au><au>Lefebvre, Austin E. Y. T.</au><au>McGahey, Gabrielle E.</au><au>Yee, Albert F.</au><au>Digman, Michelle A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Collagen density modulates triple-negative breast cancer cell metabolism through adhesion-mediated contractility</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2018-11-20</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>17094</spage><epage>11</epage><pages>17094-11</pages><artnum>17094</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Extracellular matrix (ECM) mechanical properties upregulate cancer invasion, cell contractility, and focal adhesion formation. Alteration in energy metabolism is a known characteristic of cancer cells (i.e., Warburg effect) and modulates cell invasion. There is little evidence to show if collagen density can alter cancer cell metabolism. We investigated changes in energy metabolism due to collagen density in five breast cell lines by measuring the fluorescence lifetime of NADH. We found that only triple-negative breast cancer cells, MDA-MB231 and MDA-MB468 cells, had an increased population of bound NADH, indicating an oxidative phosphorylation (OXPHOS) signature, as collagen density decreased. When inhibiting ROCK and cell contractility, MDA-MB231 cells on glass shifted from glycolysis (GLY) to OXPHOS, confirming the intricate relationship between mechanosensing and metabolism. MCF10A cells showed less significant changes in metabolism, shifting towards GLY as collagen density decreased. The MCF-7 and T-47D, less invasive breast cancer cells, compared to the MDA-MB231 and MDA-MB468 cells, showed no changes regardless of substrate. In addition, OXPHOS or GLY inhibitors in MDA-MB231 cells showed dramatic shifts from OXPHOS to GLY or vice versa . These results provide an important link between cellular metabolism, contractility, and collagen density in human breast cancer.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30459440</pmid><doi>10.1038/s41598-018-35381-9</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2018-11, Vol.8 (1), p.17094-11, Article 17094
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6244401
source PubMed (Medline); Publicly Available Content Database; Full-Text Journals in Chemistry (Open access); Springer Nature - nature.com Journals - Fully Open Access
subjects 13/106
14/10
14/19
14/69
140/125
631/57/2267
639/166/985
Adhesion
Breast cancer
Collagen
Contractility
Energy metabolism
Extracellular matrix
Glycolysis
Humanities and Social Sciences
Invasiveness
Mechanical properties
Metabolism
multidisciplinary
NADH
Oxidative phosphorylation
Phosphorylation
Science
Science (multidisciplinary)
title Collagen density modulates triple-negative breast cancer cell metabolism through adhesion-mediated contractility
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A38%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Collagen%20density%20modulates%20triple-negative%20breast%20cancer%20cell%20metabolism%20through%20adhesion-mediated%20contractility&rft.jtitle=Scientific%20reports&rft.au=Mah,%20Emma%20J.&rft.date=2018-11-20&rft.volume=8&rft.issue=1&rft.spage=17094&rft.epage=11&rft.pages=17094-11&rft.artnum=17094&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-018-35381-9&rft_dat=%3Cproquest_pubme%3E2136225907%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-6efc427ba1d6276814c7157c150a1d1dacb909be1a11e47651514673841397293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2136225907&rft_id=info:pmid/30459440&rfr_iscdi=true