Loading…
Collagen density modulates triple-negative breast cancer cell metabolism through adhesion-mediated contractility
Extracellular matrix (ECM) mechanical properties upregulate cancer invasion, cell contractility, and focal adhesion formation. Alteration in energy metabolism is a known characteristic of cancer cells (i.e., Warburg effect) and modulates cell invasion. There is little evidence to show if collagen de...
Saved in:
Published in: | Scientific reports 2018-11, Vol.8 (1), p.17094-11, Article 17094 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c474t-6efc427ba1d6276814c7157c150a1d1dacb909be1a11e47651514673841397293 |
---|---|
cites | cdi_FETCH-LOGICAL-c474t-6efc427ba1d6276814c7157c150a1d1dacb909be1a11e47651514673841397293 |
container_end_page | 11 |
container_issue | 1 |
container_start_page | 17094 |
container_title | Scientific reports |
container_volume | 8 |
creator | Mah, Emma J. Lefebvre, Austin E. Y. T. McGahey, Gabrielle E. Yee, Albert F. Digman, Michelle A. |
description | Extracellular matrix (ECM) mechanical properties upregulate cancer invasion, cell contractility, and focal adhesion formation. Alteration in energy metabolism is a known characteristic of cancer cells (i.e., Warburg effect) and modulates cell invasion. There is little evidence to show if collagen density can alter cancer cell metabolism. We investigated changes in energy metabolism due to collagen density in five breast cell lines by measuring the fluorescence lifetime of NADH. We found that only triple-negative breast cancer cells, MDA-MB231 and MDA-MB468 cells, had an increased population of bound NADH, indicating an oxidative phosphorylation (OXPHOS) signature, as collagen density decreased. When inhibiting ROCK and cell contractility, MDA-MB231 cells on glass shifted from glycolysis (GLY) to OXPHOS, confirming the intricate relationship between mechanosensing and metabolism. MCF10A cells showed less significant changes in metabolism, shifting towards GLY as collagen density decreased. The MCF-7 and T-47D, less invasive breast cancer cells, compared to the MDA-MB231 and MDA-MB468 cells, showed no changes regardless of substrate. In addition, OXPHOS or GLY inhibitors in MDA-MB231 cells showed dramatic shifts from OXPHOS to GLY or
vice versa
. These results provide an important link between cellular metabolism, contractility, and collagen density in human breast cancer. |
doi_str_mv | 10.1038/s41598-018-35381-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6244401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2136225907</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-6efc427ba1d6276814c7157c150a1d1dacb909be1a11e47651514673841397293</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxSMEolXpF-gBWeLCJeDxnyS-IKEVLUiVuNCz5TizWVeOvdhOpX57vN1SCgd8seX5-c08v6a5APoBKB8-ZgFSDS2FoeWSD9CqF80po0K2jDP28tn5pDnP-ZbWJZkSoF43J7zWlBD0tNlvovdmxkAmDNmVe7LEafWmYCYlub3HNuBsirtDMiY0uRBrgsVELHpPFixmjN7lhZRdiuu8I2baYXYxtAtOrupMxMZQkrHF-ar_pnm1NT7j-eN-1txcfvmx-dpef7_6tvl83VrRi9J2uLWC9aOBqWN9N4CwPcjegqT1CiZjR0XViGAAUPSdBAmi6_kggKueKX7WfDrq7texTmLxMIPX--QWk-51NE7_XQlup-d4pzsm6s9AFXj_KJDizxVz0YvLB9MmYFyzZsA7KQcxiIq--we9jWsK1d4DxZhUtK8UO1I2xZwTbp-GAaoPmepjprpmqh8y1Qcbb5_beHryO8EK8COQaynMmP70_o_sLz7vrm0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2136225907</pqid></control><display><type>article</type><title>Collagen density modulates triple-negative breast cancer cell metabolism through adhesion-mediated contractility</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><source>Full-Text Journals in Chemistry (Open access)</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Mah, Emma J. ; Lefebvre, Austin E. Y. T. ; McGahey, Gabrielle E. ; Yee, Albert F. ; Digman, Michelle A.</creator><creatorcontrib>Mah, Emma J. ; Lefebvre, Austin E. Y. T. ; McGahey, Gabrielle E. ; Yee, Albert F. ; Digman, Michelle A.</creatorcontrib><description>Extracellular matrix (ECM) mechanical properties upregulate cancer invasion, cell contractility, and focal adhesion formation. Alteration in energy metabolism is a known characteristic of cancer cells (i.e., Warburg effect) and modulates cell invasion. There is little evidence to show if collagen density can alter cancer cell metabolism. We investigated changes in energy metabolism due to collagen density in five breast cell lines by measuring the fluorescence lifetime of NADH. We found that only triple-negative breast cancer cells, MDA-MB231 and MDA-MB468 cells, had an increased population of bound NADH, indicating an oxidative phosphorylation (OXPHOS) signature, as collagen density decreased. When inhibiting ROCK and cell contractility, MDA-MB231 cells on glass shifted from glycolysis (GLY) to OXPHOS, confirming the intricate relationship between mechanosensing and metabolism. MCF10A cells showed less significant changes in metabolism, shifting towards GLY as collagen density decreased. The MCF-7 and T-47D, less invasive breast cancer cells, compared to the MDA-MB231 and MDA-MB468 cells, showed no changes regardless of substrate. In addition, OXPHOS or GLY inhibitors in MDA-MB231 cells showed dramatic shifts from OXPHOS to GLY or
vice versa
. These results provide an important link between cellular metabolism, contractility, and collagen density in human breast cancer.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-018-35381-9</identifier><identifier>PMID: 30459440</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/106 ; 14/10 ; 14/19 ; 14/69 ; 140/125 ; 631/57/2267 ; 639/166/985 ; Adhesion ; Breast cancer ; Collagen ; Contractility ; Energy metabolism ; Extracellular matrix ; Glycolysis ; Humanities and Social Sciences ; Invasiveness ; Mechanical properties ; Metabolism ; multidisciplinary ; NADH ; Oxidative phosphorylation ; Phosphorylation ; Science ; Science (multidisciplinary)</subject><ispartof>Scientific reports, 2018-11, Vol.8 (1), p.17094-11, Article 17094</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-6efc427ba1d6276814c7157c150a1d1dacb909be1a11e47651514673841397293</citedby><cites>FETCH-LOGICAL-c474t-6efc427ba1d6276814c7157c150a1d1dacb909be1a11e47651514673841397293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2136225907/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2136225907?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53770,53772,74873</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30459440$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mah, Emma J.</creatorcontrib><creatorcontrib>Lefebvre, Austin E. Y. T.</creatorcontrib><creatorcontrib>McGahey, Gabrielle E.</creatorcontrib><creatorcontrib>Yee, Albert F.</creatorcontrib><creatorcontrib>Digman, Michelle A.</creatorcontrib><title>Collagen density modulates triple-negative breast cancer cell metabolism through adhesion-mediated contractility</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Extracellular matrix (ECM) mechanical properties upregulate cancer invasion, cell contractility, and focal adhesion formation. Alteration in energy metabolism is a known characteristic of cancer cells (i.e., Warburg effect) and modulates cell invasion. There is little evidence to show if collagen density can alter cancer cell metabolism. We investigated changes in energy metabolism due to collagen density in five breast cell lines by measuring the fluorescence lifetime of NADH. We found that only triple-negative breast cancer cells, MDA-MB231 and MDA-MB468 cells, had an increased population of bound NADH, indicating an oxidative phosphorylation (OXPHOS) signature, as collagen density decreased. When inhibiting ROCK and cell contractility, MDA-MB231 cells on glass shifted from glycolysis (GLY) to OXPHOS, confirming the intricate relationship between mechanosensing and metabolism. MCF10A cells showed less significant changes in metabolism, shifting towards GLY as collagen density decreased. The MCF-7 and T-47D, less invasive breast cancer cells, compared to the MDA-MB231 and MDA-MB468 cells, showed no changes regardless of substrate. In addition, OXPHOS or GLY inhibitors in MDA-MB231 cells showed dramatic shifts from OXPHOS to GLY or
vice versa
. These results provide an important link between cellular metabolism, contractility, and collagen density in human breast cancer.</description><subject>13/106</subject><subject>14/10</subject><subject>14/19</subject><subject>14/69</subject><subject>140/125</subject><subject>631/57/2267</subject><subject>639/166/985</subject><subject>Adhesion</subject><subject>Breast cancer</subject><subject>Collagen</subject><subject>Contractility</subject><subject>Energy metabolism</subject><subject>Extracellular matrix</subject><subject>Glycolysis</subject><subject>Humanities and Social Sciences</subject><subject>Invasiveness</subject><subject>Mechanical properties</subject><subject>Metabolism</subject><subject>multidisciplinary</subject><subject>NADH</subject><subject>Oxidative phosphorylation</subject><subject>Phosphorylation</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kU9v1DAQxSMEolXpF-gBWeLCJeDxnyS-IKEVLUiVuNCz5TizWVeOvdhOpX57vN1SCgd8seX5-c08v6a5APoBKB8-ZgFSDS2FoeWSD9CqF80po0K2jDP28tn5pDnP-ZbWJZkSoF43J7zWlBD0tNlvovdmxkAmDNmVe7LEafWmYCYlub3HNuBsirtDMiY0uRBrgsVELHpPFixmjN7lhZRdiuu8I2baYXYxtAtOrupMxMZQkrHF-ar_pnm1NT7j-eN-1txcfvmx-dpef7_6tvl83VrRi9J2uLWC9aOBqWN9N4CwPcjegqT1CiZjR0XViGAAUPSdBAmi6_kggKueKX7WfDrq7texTmLxMIPX--QWk-51NE7_XQlup-d4pzsm6s9AFXj_KJDizxVz0YvLB9MmYFyzZsA7KQcxiIq--we9jWsK1d4DxZhUtK8UO1I2xZwTbp-GAaoPmepjprpmqh8y1Qcbb5_beHryO8EK8COQaynMmP70_o_sLz7vrm0</recordid><startdate>20181120</startdate><enddate>20181120</enddate><creator>Mah, Emma J.</creator><creator>Lefebvre, Austin E. Y. T.</creator><creator>McGahey, Gabrielle E.</creator><creator>Yee, Albert F.</creator><creator>Digman, Michelle A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20181120</creationdate><title>Collagen density modulates triple-negative breast cancer cell metabolism through adhesion-mediated contractility</title><author>Mah, Emma J. ; Lefebvre, Austin E. Y. T. ; McGahey, Gabrielle E. ; Yee, Albert F. ; Digman, Michelle A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-6efc427ba1d6276814c7157c150a1d1dacb909be1a11e47651514673841397293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>13/106</topic><topic>14/10</topic><topic>14/19</topic><topic>14/69</topic><topic>140/125</topic><topic>631/57/2267</topic><topic>639/166/985</topic><topic>Adhesion</topic><topic>Breast cancer</topic><topic>Collagen</topic><topic>Contractility</topic><topic>Energy metabolism</topic><topic>Extracellular matrix</topic><topic>Glycolysis</topic><topic>Humanities and Social Sciences</topic><topic>Invasiveness</topic><topic>Mechanical properties</topic><topic>Metabolism</topic><topic>multidisciplinary</topic><topic>NADH</topic><topic>Oxidative phosphorylation</topic><topic>Phosphorylation</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mah, Emma J.</creatorcontrib><creatorcontrib>Lefebvre, Austin E. Y. T.</creatorcontrib><creatorcontrib>McGahey, Gabrielle E.</creatorcontrib><creatorcontrib>Yee, Albert F.</creatorcontrib><creatorcontrib>Digman, Michelle A.</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mah, Emma J.</au><au>Lefebvre, Austin E. Y. T.</au><au>McGahey, Gabrielle E.</au><au>Yee, Albert F.</au><au>Digman, Michelle A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Collagen density modulates triple-negative breast cancer cell metabolism through adhesion-mediated contractility</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2018-11-20</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>17094</spage><epage>11</epage><pages>17094-11</pages><artnum>17094</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Extracellular matrix (ECM) mechanical properties upregulate cancer invasion, cell contractility, and focal adhesion formation. Alteration in energy metabolism is a known characteristic of cancer cells (i.e., Warburg effect) and modulates cell invasion. There is little evidence to show if collagen density can alter cancer cell metabolism. We investigated changes in energy metabolism due to collagen density in five breast cell lines by measuring the fluorescence lifetime of NADH. We found that only triple-negative breast cancer cells, MDA-MB231 and MDA-MB468 cells, had an increased population of bound NADH, indicating an oxidative phosphorylation (OXPHOS) signature, as collagen density decreased. When inhibiting ROCK and cell contractility, MDA-MB231 cells on glass shifted from glycolysis (GLY) to OXPHOS, confirming the intricate relationship between mechanosensing and metabolism. MCF10A cells showed less significant changes in metabolism, shifting towards GLY as collagen density decreased. The MCF-7 and T-47D, less invasive breast cancer cells, compared to the MDA-MB231 and MDA-MB468 cells, showed no changes regardless of substrate. In addition, OXPHOS or GLY inhibitors in MDA-MB231 cells showed dramatic shifts from OXPHOS to GLY or
vice versa
. These results provide an important link between cellular metabolism, contractility, and collagen density in human breast cancer.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30459440</pmid><doi>10.1038/s41598-018-35381-9</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2018-11, Vol.8 (1), p.17094-11, Article 17094 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6244401 |
source | PubMed (Medline); Publicly Available Content Database; Full-Text Journals in Chemistry (Open access); Springer Nature - nature.com Journals - Fully Open Access |
subjects | 13/106 14/10 14/19 14/69 140/125 631/57/2267 639/166/985 Adhesion Breast cancer Collagen Contractility Energy metabolism Extracellular matrix Glycolysis Humanities and Social Sciences Invasiveness Mechanical properties Metabolism multidisciplinary NADH Oxidative phosphorylation Phosphorylation Science Science (multidisciplinary) |
title | Collagen density modulates triple-negative breast cancer cell metabolism through adhesion-mediated contractility |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A38%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Collagen%20density%20modulates%20triple-negative%20breast%20cancer%20cell%20metabolism%20through%20adhesion-mediated%20contractility&rft.jtitle=Scientific%20reports&rft.au=Mah,%20Emma%20J.&rft.date=2018-11-20&rft.volume=8&rft.issue=1&rft.spage=17094&rft.epage=11&rft.pages=17094-11&rft.artnum=17094&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-018-35381-9&rft_dat=%3Cproquest_pubme%3E2136225907%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-6efc427ba1d6276814c7157c150a1d1dacb909be1a11e47651514673841397293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2136225907&rft_id=info:pmid/30459440&rfr_iscdi=true |