Loading…
Proximity-induced supercurrent through topological insulator based nanowires for quantum computation studies
Proximity-induced superconducting energy gap in the surface states of topological insulators has been predicted to host the much wanted Majorana fermions for fault-tolerant quantum computation. Recent theoretically proposed architectures for topological quantum computation via Majoranas are based on...
Saved in:
Published in: | Scientific reports 2018-11, Vol.8 (1), p.17237-12, Article 17237 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c474t-76cc3336a3074abfd6025ca01cc326a1fba8f5990ee746c71c27f7ea0827e9373 |
---|---|
cites | cdi_FETCH-LOGICAL-c474t-76cc3336a3074abfd6025ca01cc326a1fba8f5990ee746c71c27f7ea0827e9373 |
container_end_page | 12 |
container_issue | 1 |
container_start_page | 17237 |
container_title | Scientific reports |
container_volume | 8 |
creator | Bhattacharyya, Biplab Awana, V. P. S. Senguttuvan, T. D. Ojha, V. N. Husale, Sudhir |
description | Proximity-induced superconducting energy gap in the surface states of topological insulators has been predicted to host the much wanted Majorana fermions for fault-tolerant quantum computation. Recent theoretically proposed architectures for topological quantum computation via Majoranas are based on large networks of Kitaev’s one-dimensional quantum wires, which pose a huge experimental challenge in terms of scalability of the current single nanowire based devices. Here, we address this problem by realizing robust superconductivity in junctions of fabricated topological insulator (Bi
2
Se
3
) nanowires proximity-coupled to conventional s-wave superconducting (W) electrodes. Milling technique possesses great potential in fabrication of any desired shapes and structures at nanoscale level, and therefore can be effectively utilized to scale-up the existing single nanowire based design into nanowire based network architectures. We demonstrate the dominant role of ballistic topological surface states in propagating the long-range proximity induced superconducting order with high I
c
R
N
product in long Bi
2
Se
3
junctions. Large upper critical magnetic fields exceeding the Chandrasekhar-Clogston limit suggests the existence of robust superconducting order with spin-triplet cooper pairing. An unconventional inverse dependence of I
c
R
N
product on the width of the nanowire junction was also observed. |
doi_str_mv | 10.1038/s41598-018-35424-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6250704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2136902528</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-76cc3336a3074abfd6025ca01cc326a1fba8f5990ee746c71c27f7ea0827e9373</originalsourceid><addsrcrecordid>eNp9kU1P3DAQhq0KVBDsH-ihisSFS6i_YicXpArRFgkJDnC2Zh1n1yixgz_a7r_HdBdKe8CXsWaeeWdGL0KfCD4jmLVfIidN19aYtDVrOOU1-YAOKeZNTRmle2_-B2gR4wMur6EdJ91HdMAwF5IJfojG2-B_28mmTW1dn7Xpq5hnE3QOwbhUpXXwebWukp_96FdWw1hZF_MIyYdqCbE0OHD-lw0mVkPJPWZwKU-V9tOcEyTrXRVT7q2Jx2h_gDGaxS4eoftvl3cXP-rrm-9XF1-va80lT7UUWjPGBDAsOSyHXmDaaMCkpKkAMiyhHZquw8ZILrQkmspBGsAtlaZjkh2h863unJeT6XU5JMCo5mAnCBvlwap_K86u1cr_VII2WGJeBE53AsE_ZhOTmmzUZhzBGZ-jooSVyUQwXNCT_9AHn4Mr5z1Toiur07ZQdEvp4GMMZnhdhmD17Kfa-qmKn-qPn4qUps9vz3hteXGvAGwLxFJyKxP-zn5H9gn_N67d</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2136902528</pqid></control><display><type>article</type><title>Proximity-induced supercurrent through topological insulator based nanowires for quantum computation studies</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Bhattacharyya, Biplab ; Awana, V. P. S. ; Senguttuvan, T. D. ; Ojha, V. N. ; Husale, Sudhir</creator><creatorcontrib>Bhattacharyya, Biplab ; Awana, V. P. S. ; Senguttuvan, T. D. ; Ojha, V. N. ; Husale, Sudhir</creatorcontrib><description>Proximity-induced superconducting energy gap in the surface states of topological insulators has been predicted to host the much wanted Majorana fermions for fault-tolerant quantum computation. Recent theoretically proposed architectures for topological quantum computation via Majoranas are based on large networks of Kitaev’s one-dimensional quantum wires, which pose a huge experimental challenge in terms of scalability of the current single nanowire based devices. Here, we address this problem by realizing robust superconductivity in junctions of fabricated topological insulator (Bi
2
Se
3
) nanowires proximity-coupled to conventional s-wave superconducting (W) electrodes. Milling technique possesses great potential in fabrication of any desired shapes and structures at nanoscale level, and therefore can be effectively utilized to scale-up the existing single nanowire based design into nanowire based network architectures. We demonstrate the dominant role of ballistic topological surface states in propagating the long-range proximity induced superconducting order with high I
c
R
N
product in long Bi
2
Se
3
junctions. Large upper critical magnetic fields exceeding the Chandrasekhar-Clogston limit suggests the existence of robust superconducting order with spin-triplet cooper pairing. An unconventional inverse dependence of I
c
R
N
product on the width of the nanowire junction was also observed.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-018-35424-1</identifier><identifier>PMID: 30467364</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119/1003 ; 639/301/357/1016 ; Fabrication ; Humanities and Social Sciences ; Magnetic fields ; multidisciplinary ; Nanotechnology ; Nanowires ; Science ; Science (multidisciplinary)</subject><ispartof>Scientific reports, 2018-11, Vol.8 (1), p.17237-12, Article 17237</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-76cc3336a3074abfd6025ca01cc326a1fba8f5990ee746c71c27f7ea0827e9373</citedby><cites>FETCH-LOGICAL-c474t-76cc3336a3074abfd6025ca01cc326a1fba8f5990ee746c71c27f7ea0827e9373</cites><orcidid>0000-0002-9568-5473</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2136902528/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2136902528?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30467364$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bhattacharyya, Biplab</creatorcontrib><creatorcontrib>Awana, V. P. S.</creatorcontrib><creatorcontrib>Senguttuvan, T. D.</creatorcontrib><creatorcontrib>Ojha, V. N.</creatorcontrib><creatorcontrib>Husale, Sudhir</creatorcontrib><title>Proximity-induced supercurrent through topological insulator based nanowires for quantum computation studies</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Proximity-induced superconducting energy gap in the surface states of topological insulators has been predicted to host the much wanted Majorana fermions for fault-tolerant quantum computation. Recent theoretically proposed architectures for topological quantum computation via Majoranas are based on large networks of Kitaev’s one-dimensional quantum wires, which pose a huge experimental challenge in terms of scalability of the current single nanowire based devices. Here, we address this problem by realizing robust superconductivity in junctions of fabricated topological insulator (Bi
2
Se
3
) nanowires proximity-coupled to conventional s-wave superconducting (W) electrodes. Milling technique possesses great potential in fabrication of any desired shapes and structures at nanoscale level, and therefore can be effectively utilized to scale-up the existing single nanowire based design into nanowire based network architectures. We demonstrate the dominant role of ballistic topological surface states in propagating the long-range proximity induced superconducting order with high I
c
R
N
product in long Bi
2
Se
3
junctions. Large upper critical magnetic fields exceeding the Chandrasekhar-Clogston limit suggests the existence of robust superconducting order with spin-triplet cooper pairing. An unconventional inverse dependence of I
c
R
N
product on the width of the nanowire junction was also observed.</description><subject>639/301/119/1003</subject><subject>639/301/357/1016</subject><subject>Fabrication</subject><subject>Humanities and Social Sciences</subject><subject>Magnetic fields</subject><subject>multidisciplinary</subject><subject>Nanotechnology</subject><subject>Nanowires</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kU1P3DAQhq0KVBDsH-ihisSFS6i_YicXpArRFgkJDnC2Zh1n1yixgz_a7r_HdBdKe8CXsWaeeWdGL0KfCD4jmLVfIidN19aYtDVrOOU1-YAOKeZNTRmle2_-B2gR4wMur6EdJ91HdMAwF5IJfojG2-B_28mmTW1dn7Xpq5hnE3QOwbhUpXXwebWukp_96FdWw1hZF_MIyYdqCbE0OHD-lw0mVkPJPWZwKU-V9tOcEyTrXRVT7q2Jx2h_gDGaxS4eoftvl3cXP-rrm-9XF1-va80lT7UUWjPGBDAsOSyHXmDaaMCkpKkAMiyhHZquw8ZILrQkmspBGsAtlaZjkh2h863unJeT6XU5JMCo5mAnCBvlwap_K86u1cr_VII2WGJeBE53AsE_ZhOTmmzUZhzBGZ-jooSVyUQwXNCT_9AHn4Mr5z1Toiur07ZQdEvp4GMMZnhdhmD17Kfa-qmKn-qPn4qUps9vz3hteXGvAGwLxFJyKxP-zn5H9gn_N67d</recordid><startdate>20181122</startdate><enddate>20181122</enddate><creator>Bhattacharyya, Biplab</creator><creator>Awana, V. P. S.</creator><creator>Senguttuvan, T. D.</creator><creator>Ojha, V. N.</creator><creator>Husale, Sudhir</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9568-5473</orcidid></search><sort><creationdate>20181122</creationdate><title>Proximity-induced supercurrent through topological insulator based nanowires for quantum computation studies</title><author>Bhattacharyya, Biplab ; Awana, V. P. S. ; Senguttuvan, T. D. ; Ojha, V. N. ; Husale, Sudhir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-76cc3336a3074abfd6025ca01cc326a1fba8f5990ee746c71c27f7ea0827e9373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>639/301/119/1003</topic><topic>639/301/357/1016</topic><topic>Fabrication</topic><topic>Humanities and Social Sciences</topic><topic>Magnetic fields</topic><topic>multidisciplinary</topic><topic>Nanotechnology</topic><topic>Nanowires</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhattacharyya, Biplab</creatorcontrib><creatorcontrib>Awana, V. P. S.</creatorcontrib><creatorcontrib>Senguttuvan, T. D.</creatorcontrib><creatorcontrib>Ojha, V. N.</creatorcontrib><creatorcontrib>Husale, Sudhir</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhattacharyya, Biplab</au><au>Awana, V. P. S.</au><au>Senguttuvan, T. D.</au><au>Ojha, V. N.</au><au>Husale, Sudhir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proximity-induced supercurrent through topological insulator based nanowires for quantum computation studies</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2018-11-22</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>17237</spage><epage>12</epage><pages>17237-12</pages><artnum>17237</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Proximity-induced superconducting energy gap in the surface states of topological insulators has been predicted to host the much wanted Majorana fermions for fault-tolerant quantum computation. Recent theoretically proposed architectures for topological quantum computation via Majoranas are based on large networks of Kitaev’s one-dimensional quantum wires, which pose a huge experimental challenge in terms of scalability of the current single nanowire based devices. Here, we address this problem by realizing robust superconductivity in junctions of fabricated topological insulator (Bi
2
Se
3
) nanowires proximity-coupled to conventional s-wave superconducting (W) electrodes. Milling technique possesses great potential in fabrication of any desired shapes and structures at nanoscale level, and therefore can be effectively utilized to scale-up the existing single nanowire based design into nanowire based network architectures. We demonstrate the dominant role of ballistic topological surface states in propagating the long-range proximity induced superconducting order with high I
c
R
N
product in long Bi
2
Se
3
junctions. Large upper critical magnetic fields exceeding the Chandrasekhar-Clogston limit suggests the existence of robust superconducting order with spin-triplet cooper pairing. An unconventional inverse dependence of I
c
R
N
product on the width of the nanowire junction was also observed.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30467364</pmid><doi>10.1038/s41598-018-35424-1</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9568-5473</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2018-11, Vol.8 (1), p.17237-12, Article 17237 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6250704 |
source | Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/301/119/1003 639/301/357/1016 Fabrication Humanities and Social Sciences Magnetic fields multidisciplinary Nanotechnology Nanowires Science Science (multidisciplinary) |
title | Proximity-induced supercurrent through topological insulator based nanowires for quantum computation studies |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A43%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proximity-induced%20supercurrent%20through%20topological%20insulator%20based%20nanowires%20for%20quantum%20computation%20studies&rft.jtitle=Scientific%20reports&rft.au=Bhattacharyya,%20Biplab&rft.date=2018-11-22&rft.volume=8&rft.issue=1&rft.spage=17237&rft.epage=12&rft.pages=17237-12&rft.artnum=17237&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-018-35424-1&rft_dat=%3Cproquest_pubme%3E2136902528%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-76cc3336a3074abfd6025ca01cc326a1fba8f5990ee746c71c27f7ea0827e9373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2136902528&rft_id=info:pmid/30467364&rfr_iscdi=true |