Loading…

Intraoperative Extracorporeal Irradiation and Frozen Treatment on Tumor-bearing Autografts Show Equivalent Outcomes for Biologic Reconstruction

Immediately recycling the resected bone segment in a biologic limb salvage reconstruction is an option after wide resection of bone. Intraoperative extracorporeal irradiation and freezing are the two major tumor-killing techniques applied on the fresh tumor-bearing autografts. However, graft-derived...

Full description

Saved in:
Bibliographic Details
Published in:Clinical orthopaedics and related research 2018-04, Vol.476 (4), p.877-889
Main Authors: Wu, Po-Kuei, Chen, Cheng-Fong, Chen, Chao-Ming, Cheng, Yu-Chi, Tsai, Shang-Wen, Chen, Tain-Hsiung, Chen, Wei-Ming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Immediately recycling the resected bone segment in a biologic limb salvage reconstruction is an option after wide resection of bone. Intraoperative extracorporeal irradiation and freezing are the two major tumor-killing techniques applied on the fresh tumor-bearing autografts. However, graft-derived tumor recurrence and complications are concerns affecting graft survival. We therefore asked: (1) Is there a difference in the proportion of patients achieving union by 18 months after surgery between the groups with extracorporeal-irradiated autografts and frozen-treated autografts? (2) Is there any difference in the frequency of graft-related complications for patients receiving either an extracorporeal-irradiated or a frozen-treated autograft? (3) Is there a difference between the techniques in terms of graft-derived recurrence? (4) Are there differences in failure-free grafts, and limb and overall survivorship between autografts treated by extracorporeal irradiation or by freezing? During the study period we treated a total of 333 patients with high-grade osteosarcoma. One hundred sixty-nine patients were excluded. Overall, 79 of the enrolled 164 patients received recycled autografts treated with extracorporeal irradiation whereas the other 85 received frozen-treated autografts. The mean followup was 82 ± 54 months for the extracorporeal irradiation group and 70 ± 25 months for the frozen autograft group, and one patient was lost to followup. Complications and graft failure (revision required for primary graft removal) were characterized by adapting the International Society of Limb Society (ISOLS) system modified for inclusion of biologic and expandable reconstruction. The primary study endpoints were the proportion of patients in each group who achieved radiographic union, and had an ISOLS grade of fair or good host graft fusion at 6, 9, 12, and 18 months after surgery. Five-year survival data for graft failure and limb amputation were analyzed by a cumulative incidence function regression model whereas the Kaplan-Meier function was used to test the 5-year overall survival rate between the two techniques. With the numbers available, no differences were found in the accumulated proportion of patients achieving union between the groups at 6, 9, 12, and 18 months. Radiographic evaluation did not show differences in the average scores of compared criteria. However in the subchondral bone subcriterion, more patients receiving frozen-treated autografts had high
ISSN:0009-921X
1528-1132
0009-921X
DOI:10.1007/s11999.0000000000000022