Loading…

A kinome-wide RNAi screen identifies ALK as a target to sensitize neuroblastoma cells for HDAC8-inhibitor treatment

The prognosis of advanced stage neuroblastoma patients remains poor and, despite intensive therapy, the 5-year survival rate remains less than 50%. We previously identified histone deacetylase (HDAC) 8 as an indicator of poor clinical outcome and a selective drug target for differentiation therapy i...

Full description

Saved in:
Bibliographic Details
Published in:Cell death and differentiation 2018-12, Vol.25 (12), p.2053-2070
Main Authors: Shen, Jing, Najafi, Sara, Stäble, Sina, Fabian, Johannes, Koeneke, Emily, Kolbinger, Fiona R., Wrobel, Jagoda K., Meder, Benjamin, Distel, Martin, Heimburg, Tino, Sippl, Wolfgang, Jung, Manfred, Peterziel, Heike, Kranz, Dominique, Boutros, Michael, Westermann, Frank, Witt, Olaf, Oehme, Ina
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c470t-694deb52c7cb3024c815d58a9c2011171a99a41f57b36857a5464a3c636ebbfd3
cites cdi_FETCH-LOGICAL-c470t-694deb52c7cb3024c815d58a9c2011171a99a41f57b36857a5464a3c636ebbfd3
container_end_page 2070
container_issue 12
container_start_page 2053
container_title Cell death and differentiation
container_volume 25
creator Shen, Jing
Najafi, Sara
Stäble, Sina
Fabian, Johannes
Koeneke, Emily
Kolbinger, Fiona R.
Wrobel, Jagoda K.
Meder, Benjamin
Distel, Martin
Heimburg, Tino
Sippl, Wolfgang
Jung, Manfred
Peterziel, Heike
Kranz, Dominique
Boutros, Michael
Westermann, Frank
Witt, Olaf
Oehme, Ina
description The prognosis of advanced stage neuroblastoma patients remains poor and, despite intensive therapy, the 5-year survival rate remains less than 50%. We previously identified histone deacetylase (HDAC) 8 as an indicator of poor clinical outcome and a selective drug target for differentiation therapy in vitro and in vivo. Here, we performed kinome-wide RNAi screening to identify genes that are synthetically lethal with HDAC8 inhibitors. These experiments identified the neuroblastoma predisposition gene ALK as a candidate gene. Accordingly, the combination of the ALK/MET inhibitor crizotinib and selective HDAC8 inhibitors (3–6 µM PCI-34051 or 10 µM 20a) efficiently killed neuroblastoma cell lines carrying wildtype ALK (SK-N-BE(2)-C, IMR5/75), amplified ALK (NB-1), and those carrying the activating ALK F1174L mutation (Kelly), and, in cells carrying the activating R1275Q mutation (LAN-5), combination treatment decreased viable cell count. The effective dose of crizotinib in neuroblastoma cell lines ranged from 0.05 µM ( ALK -amplified) to 0.8 µM (wildtype ALK ). The combinatorial inhibition of ALK and HDAC8 also decreased tumor growth in an in vivo zebrafish xenograft model. Bioinformatic analyses revealed that the mRNA expression level of HDAC8 was significantly correlated with that of ALK in two independent patient cohorts, the Academic Medical Center cohort ( n  = 88) and the German Neuroblastoma Trial cohort ( n  = 649), and co-expression of both target genes identified patients with very poor outcome. Mechanistically, HDAC8 and ALK converge at the level of receptor tyrosine kinase (RTK) signaling and their downstream survival pathways, such as ERK signaling. Combination treatment of HDAC8 inhibitor with crizotinib efficiently blocked the activation of growth receptor survival signaling and shifted the cell cycle arrest and differentiation phenotype toward effective cell death of neuroblastoma cell lines, including sensitization of resistant models, but not of normal cells. These findings reveal combined targeting of ALK and HDAC8 as a novel strategy for the treatment of neuroblastoma.
doi_str_mv 10.1038/s41418-018-0080-0
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6261943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2139100401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-694deb52c7cb3024c815d58a9c2011171a99a41f57b36857a5464a3c636ebbfd3</originalsourceid><addsrcrecordid>eNp1kU1v1DAQhiMEoqXwA7ggS1y4hM7EH4kvSNHyUdQVSAjOluM4W5fELrYDgl9fr7a0gMRhZI_mmXdm9FbVU4SXCLQ7TQwZdjXsAzqo4V51jKwVNWdA75c_5VBLYO1R9SilSwAQrRQPq6NGcuQN58dV6slX58Ni6x9utOTTh96RZKK1npTcZzc5m0i_PSc6EU2yjjubSQ4kWZ9cdr8s8XaNYZh1ymHRxNh5TmQKkZy97jdd7fyFG1wueY5W56VoPq4eTHpO9snNe1J9efvm8-as3n58937Tb2vDWsi1kGy0A29MawYKDTMd8pF3WpoGELFFLaVmOPF2oKLjreZMME2NoMIOwzTSk-rVQfdqHRY7mjI66lldRbfo-FMF7dTfFe8u1C58V6IRKBktAi9uBGL4ttqU1eLS_kDtbViTKns0iB2VsqDP_0Evwxp9OU81SCUCMMBC4YEyMaQU7XS7DILaW6oOlirYR7FUQel59ucVtx2_PSxAcwBSKfmdjXej_696DWaZrCU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2139100401</pqid></control><display><type>article</type><title>A kinome-wide RNAi screen identifies ALK as a target to sensitize neuroblastoma cells for HDAC8-inhibitor treatment</title><source>Open Access: PubMed Central</source><source>Springer Link</source><creator>Shen, Jing ; Najafi, Sara ; Stäble, Sina ; Fabian, Johannes ; Koeneke, Emily ; Kolbinger, Fiona R. ; Wrobel, Jagoda K. ; Meder, Benjamin ; Distel, Martin ; Heimburg, Tino ; Sippl, Wolfgang ; Jung, Manfred ; Peterziel, Heike ; Kranz, Dominique ; Boutros, Michael ; Westermann, Frank ; Witt, Olaf ; Oehme, Ina</creator><creatorcontrib>Shen, Jing ; Najafi, Sara ; Stäble, Sina ; Fabian, Johannes ; Koeneke, Emily ; Kolbinger, Fiona R. ; Wrobel, Jagoda K. ; Meder, Benjamin ; Distel, Martin ; Heimburg, Tino ; Sippl, Wolfgang ; Jung, Manfred ; Peterziel, Heike ; Kranz, Dominique ; Boutros, Michael ; Westermann, Frank ; Witt, Olaf ; Oehme, Ina</creatorcontrib><description>The prognosis of advanced stage neuroblastoma patients remains poor and, despite intensive therapy, the 5-year survival rate remains less than 50%. We previously identified histone deacetylase (HDAC) 8 as an indicator of poor clinical outcome and a selective drug target for differentiation therapy in vitro and in vivo. Here, we performed kinome-wide RNAi screening to identify genes that are synthetically lethal with HDAC8 inhibitors. These experiments identified the neuroblastoma predisposition gene ALK as a candidate gene. Accordingly, the combination of the ALK/MET inhibitor crizotinib and selective HDAC8 inhibitors (3–6 µM PCI-34051 or 10 µM 20a) efficiently killed neuroblastoma cell lines carrying wildtype ALK (SK-N-BE(2)-C, IMR5/75), amplified ALK (NB-1), and those carrying the activating ALK F1174L mutation (Kelly), and, in cells carrying the activating R1275Q mutation (LAN-5), combination treatment decreased viable cell count. The effective dose of crizotinib in neuroblastoma cell lines ranged from 0.05 µM ( ALK -amplified) to 0.8 µM (wildtype ALK ). The combinatorial inhibition of ALK and HDAC8 also decreased tumor growth in an in vivo zebrafish xenograft model. Bioinformatic analyses revealed that the mRNA expression level of HDAC8 was significantly correlated with that of ALK in two independent patient cohorts, the Academic Medical Center cohort ( n  = 88) and the German Neuroblastoma Trial cohort ( n  = 649), and co-expression of both target genes identified patients with very poor outcome. Mechanistically, HDAC8 and ALK converge at the level of receptor tyrosine kinase (RTK) signaling and their downstream survival pathways, such as ERK signaling. Combination treatment of HDAC8 inhibitor with crizotinib efficiently blocked the activation of growth receptor survival signaling and shifted the cell cycle arrest and differentiation phenotype toward effective cell death of neuroblastoma cell lines, including sensitization of resistant models, but not of normal cells. These findings reveal combined targeting of ALK and HDAC8 as a novel strategy for the treatment of neuroblastoma.</description><identifier>ISSN: 1350-9047</identifier><identifier>EISSN: 1476-5403</identifier><identifier>DOI: 10.1038/s41418-018-0080-0</identifier><identifier>PMID: 29515255</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/109 ; 13/2 ; 13/31 ; 13/89 ; 13/95 ; 14/34 ; 14/63 ; 38/39 ; 38/61 ; 631/67/2332 ; 631/67/395 ; 692/308/2778 ; Apoptosis ; Biochemistry ; Biomedical and Life Sciences ; c-Met protein ; Cell Biology ; Cell cycle ; Cell Cycle Analysis ; Cell death ; Extracellular signal-regulated kinase ; Gene expression ; Genes ; Histone deacetylase ; Life Sciences ; Medical prognosis ; Mutation ; Neuroblastoma ; Neuroblasts ; Patients ; Phenotypes ; Protein-tyrosine kinase receptors ; RNA-mediated interference ; Stem Cells ; Xenografts</subject><ispartof>Cell death and differentiation, 2018-12, Vol.25 (12), p.2053-2070</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-694deb52c7cb3024c815d58a9c2011171a99a41f57b36857a5464a3c636ebbfd3</citedby><cites>FETCH-LOGICAL-c470t-694deb52c7cb3024c815d58a9c2011171a99a41f57b36857a5464a3c636ebbfd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6261943/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6261943/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29515255$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shen, Jing</creatorcontrib><creatorcontrib>Najafi, Sara</creatorcontrib><creatorcontrib>Stäble, Sina</creatorcontrib><creatorcontrib>Fabian, Johannes</creatorcontrib><creatorcontrib>Koeneke, Emily</creatorcontrib><creatorcontrib>Kolbinger, Fiona R.</creatorcontrib><creatorcontrib>Wrobel, Jagoda K.</creatorcontrib><creatorcontrib>Meder, Benjamin</creatorcontrib><creatorcontrib>Distel, Martin</creatorcontrib><creatorcontrib>Heimburg, Tino</creatorcontrib><creatorcontrib>Sippl, Wolfgang</creatorcontrib><creatorcontrib>Jung, Manfred</creatorcontrib><creatorcontrib>Peterziel, Heike</creatorcontrib><creatorcontrib>Kranz, Dominique</creatorcontrib><creatorcontrib>Boutros, Michael</creatorcontrib><creatorcontrib>Westermann, Frank</creatorcontrib><creatorcontrib>Witt, Olaf</creatorcontrib><creatorcontrib>Oehme, Ina</creatorcontrib><title>A kinome-wide RNAi screen identifies ALK as a target to sensitize neuroblastoma cells for HDAC8-inhibitor treatment</title><title>Cell death and differentiation</title><addtitle>Cell Death Differ</addtitle><addtitle>Cell Death Differ</addtitle><description>The prognosis of advanced stage neuroblastoma patients remains poor and, despite intensive therapy, the 5-year survival rate remains less than 50%. We previously identified histone deacetylase (HDAC) 8 as an indicator of poor clinical outcome and a selective drug target for differentiation therapy in vitro and in vivo. Here, we performed kinome-wide RNAi screening to identify genes that are synthetically lethal with HDAC8 inhibitors. These experiments identified the neuroblastoma predisposition gene ALK as a candidate gene. Accordingly, the combination of the ALK/MET inhibitor crizotinib and selective HDAC8 inhibitors (3–6 µM PCI-34051 or 10 µM 20a) efficiently killed neuroblastoma cell lines carrying wildtype ALK (SK-N-BE(2)-C, IMR5/75), amplified ALK (NB-1), and those carrying the activating ALK F1174L mutation (Kelly), and, in cells carrying the activating R1275Q mutation (LAN-5), combination treatment decreased viable cell count. The effective dose of crizotinib in neuroblastoma cell lines ranged from 0.05 µM ( ALK -amplified) to 0.8 µM (wildtype ALK ). The combinatorial inhibition of ALK and HDAC8 also decreased tumor growth in an in vivo zebrafish xenograft model. Bioinformatic analyses revealed that the mRNA expression level of HDAC8 was significantly correlated with that of ALK in two independent patient cohorts, the Academic Medical Center cohort ( n  = 88) and the German Neuroblastoma Trial cohort ( n  = 649), and co-expression of both target genes identified patients with very poor outcome. Mechanistically, HDAC8 and ALK converge at the level of receptor tyrosine kinase (RTK) signaling and their downstream survival pathways, such as ERK signaling. Combination treatment of HDAC8 inhibitor with crizotinib efficiently blocked the activation of growth receptor survival signaling and shifted the cell cycle arrest and differentiation phenotype toward effective cell death of neuroblastoma cell lines, including sensitization of resistant models, but not of normal cells. These findings reveal combined targeting of ALK and HDAC8 as a novel strategy for the treatment of neuroblastoma.</description><subject>13/109</subject><subject>13/2</subject><subject>13/31</subject><subject>13/89</subject><subject>13/95</subject><subject>14/34</subject><subject>14/63</subject><subject>38/39</subject><subject>38/61</subject><subject>631/67/2332</subject><subject>631/67/395</subject><subject>692/308/2778</subject><subject>Apoptosis</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>c-Met protein</subject><subject>Cell Biology</subject><subject>Cell cycle</subject><subject>Cell Cycle Analysis</subject><subject>Cell death</subject><subject>Extracellular signal-regulated kinase</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Histone deacetylase</subject><subject>Life Sciences</subject><subject>Medical prognosis</subject><subject>Mutation</subject><subject>Neuroblastoma</subject><subject>Neuroblasts</subject><subject>Patients</subject><subject>Phenotypes</subject><subject>Protein-tyrosine kinase receptors</subject><subject>RNA-mediated interference</subject><subject>Stem Cells</subject><subject>Xenografts</subject><issn>1350-9047</issn><issn>1476-5403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kU1v1DAQhiMEoqXwA7ggS1y4hM7EH4kvSNHyUdQVSAjOluM4W5fELrYDgl9fr7a0gMRhZI_mmXdm9FbVU4SXCLQ7TQwZdjXsAzqo4V51jKwVNWdA75c_5VBLYO1R9SilSwAQrRQPq6NGcuQN58dV6slX58Ni6x9utOTTh96RZKK1npTcZzc5m0i_PSc6EU2yjjubSQ4kWZ9cdr8s8XaNYZh1ymHRxNh5TmQKkZy97jdd7fyFG1wueY5W56VoPq4eTHpO9snNe1J9efvm8-as3n58937Tb2vDWsi1kGy0A29MawYKDTMd8pF3WpoGELFFLaVmOPF2oKLjreZMME2NoMIOwzTSk-rVQfdqHRY7mjI66lldRbfo-FMF7dTfFe8u1C58V6IRKBktAi9uBGL4ttqU1eLS_kDtbViTKns0iB2VsqDP_0Evwxp9OU81SCUCMMBC4YEyMaQU7XS7DILaW6oOlirYR7FUQel59ucVtx2_PSxAcwBSKfmdjXej_696DWaZrCU</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Shen, Jing</creator><creator>Najafi, Sara</creator><creator>Stäble, Sina</creator><creator>Fabian, Johannes</creator><creator>Koeneke, Emily</creator><creator>Kolbinger, Fiona R.</creator><creator>Wrobel, Jagoda K.</creator><creator>Meder, Benjamin</creator><creator>Distel, Martin</creator><creator>Heimburg, Tino</creator><creator>Sippl, Wolfgang</creator><creator>Jung, Manfred</creator><creator>Peterziel, Heike</creator><creator>Kranz, Dominique</creator><creator>Boutros, Michael</creator><creator>Westermann, Frank</creator><creator>Witt, Olaf</creator><creator>Oehme, Ina</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20181201</creationdate><title>A kinome-wide RNAi screen identifies ALK as a target to sensitize neuroblastoma cells for HDAC8-inhibitor treatment</title><author>Shen, Jing ; Najafi, Sara ; Stäble, Sina ; Fabian, Johannes ; Koeneke, Emily ; Kolbinger, Fiona R. ; Wrobel, Jagoda K. ; Meder, Benjamin ; Distel, Martin ; Heimburg, Tino ; Sippl, Wolfgang ; Jung, Manfred ; Peterziel, Heike ; Kranz, Dominique ; Boutros, Michael ; Westermann, Frank ; Witt, Olaf ; Oehme, Ina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-694deb52c7cb3024c815d58a9c2011171a99a41f57b36857a5464a3c636ebbfd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>13/109</topic><topic>13/2</topic><topic>13/31</topic><topic>13/89</topic><topic>13/95</topic><topic>14/34</topic><topic>14/63</topic><topic>38/39</topic><topic>38/61</topic><topic>631/67/2332</topic><topic>631/67/395</topic><topic>692/308/2778</topic><topic>Apoptosis</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>c-Met protein</topic><topic>Cell Biology</topic><topic>Cell cycle</topic><topic>Cell Cycle Analysis</topic><topic>Cell death</topic><topic>Extracellular signal-regulated kinase</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Histone deacetylase</topic><topic>Life Sciences</topic><topic>Medical prognosis</topic><topic>Mutation</topic><topic>Neuroblastoma</topic><topic>Neuroblasts</topic><topic>Patients</topic><topic>Phenotypes</topic><topic>Protein-tyrosine kinase receptors</topic><topic>RNA-mediated interference</topic><topic>Stem Cells</topic><topic>Xenografts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Jing</creatorcontrib><creatorcontrib>Najafi, Sara</creatorcontrib><creatorcontrib>Stäble, Sina</creatorcontrib><creatorcontrib>Fabian, Johannes</creatorcontrib><creatorcontrib>Koeneke, Emily</creatorcontrib><creatorcontrib>Kolbinger, Fiona R.</creatorcontrib><creatorcontrib>Wrobel, Jagoda K.</creatorcontrib><creatorcontrib>Meder, Benjamin</creatorcontrib><creatorcontrib>Distel, Martin</creatorcontrib><creatorcontrib>Heimburg, Tino</creatorcontrib><creatorcontrib>Sippl, Wolfgang</creatorcontrib><creatorcontrib>Jung, Manfred</creatorcontrib><creatorcontrib>Peterziel, Heike</creatorcontrib><creatorcontrib>Kranz, Dominique</creatorcontrib><creatorcontrib>Boutros, Michael</creatorcontrib><creatorcontrib>Westermann, Frank</creatorcontrib><creatorcontrib>Witt, Olaf</creatorcontrib><creatorcontrib>Oehme, Ina</creatorcontrib><collection>Springer_OA刊</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell death and differentiation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Jing</au><au>Najafi, Sara</au><au>Stäble, Sina</au><au>Fabian, Johannes</au><au>Koeneke, Emily</au><au>Kolbinger, Fiona R.</au><au>Wrobel, Jagoda K.</au><au>Meder, Benjamin</au><au>Distel, Martin</au><au>Heimburg, Tino</au><au>Sippl, Wolfgang</au><au>Jung, Manfred</au><au>Peterziel, Heike</au><au>Kranz, Dominique</au><au>Boutros, Michael</au><au>Westermann, Frank</au><au>Witt, Olaf</au><au>Oehme, Ina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A kinome-wide RNAi screen identifies ALK as a target to sensitize neuroblastoma cells for HDAC8-inhibitor treatment</atitle><jtitle>Cell death and differentiation</jtitle><stitle>Cell Death Differ</stitle><addtitle>Cell Death Differ</addtitle><date>2018-12-01</date><risdate>2018</risdate><volume>25</volume><issue>12</issue><spage>2053</spage><epage>2070</epage><pages>2053-2070</pages><issn>1350-9047</issn><eissn>1476-5403</eissn><abstract>The prognosis of advanced stage neuroblastoma patients remains poor and, despite intensive therapy, the 5-year survival rate remains less than 50%. We previously identified histone deacetylase (HDAC) 8 as an indicator of poor clinical outcome and a selective drug target for differentiation therapy in vitro and in vivo. Here, we performed kinome-wide RNAi screening to identify genes that are synthetically lethal with HDAC8 inhibitors. These experiments identified the neuroblastoma predisposition gene ALK as a candidate gene. Accordingly, the combination of the ALK/MET inhibitor crizotinib and selective HDAC8 inhibitors (3–6 µM PCI-34051 or 10 µM 20a) efficiently killed neuroblastoma cell lines carrying wildtype ALK (SK-N-BE(2)-C, IMR5/75), amplified ALK (NB-1), and those carrying the activating ALK F1174L mutation (Kelly), and, in cells carrying the activating R1275Q mutation (LAN-5), combination treatment decreased viable cell count. The effective dose of crizotinib in neuroblastoma cell lines ranged from 0.05 µM ( ALK -amplified) to 0.8 µM (wildtype ALK ). The combinatorial inhibition of ALK and HDAC8 also decreased tumor growth in an in vivo zebrafish xenograft model. Bioinformatic analyses revealed that the mRNA expression level of HDAC8 was significantly correlated with that of ALK in two independent patient cohorts, the Academic Medical Center cohort ( n  = 88) and the German Neuroblastoma Trial cohort ( n  = 649), and co-expression of both target genes identified patients with very poor outcome. Mechanistically, HDAC8 and ALK converge at the level of receptor tyrosine kinase (RTK) signaling and their downstream survival pathways, such as ERK signaling. Combination treatment of HDAC8 inhibitor with crizotinib efficiently blocked the activation of growth receptor survival signaling and shifted the cell cycle arrest and differentiation phenotype toward effective cell death of neuroblastoma cell lines, including sensitization of resistant models, but not of normal cells. These findings reveal combined targeting of ALK and HDAC8 as a novel strategy for the treatment of neuroblastoma.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29515255</pmid><doi>10.1038/s41418-018-0080-0</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1350-9047
ispartof Cell death and differentiation, 2018-12, Vol.25 (12), p.2053-2070
issn 1350-9047
1476-5403
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6261943
source Open Access: PubMed Central; Springer Link
subjects 13/109
13/2
13/31
13/89
13/95
14/34
14/63
38/39
38/61
631/67/2332
631/67/395
692/308/2778
Apoptosis
Biochemistry
Biomedical and Life Sciences
c-Met protein
Cell Biology
Cell cycle
Cell Cycle Analysis
Cell death
Extracellular signal-regulated kinase
Gene expression
Genes
Histone deacetylase
Life Sciences
Medical prognosis
Mutation
Neuroblastoma
Neuroblasts
Patients
Phenotypes
Protein-tyrosine kinase receptors
RNA-mediated interference
Stem Cells
Xenografts
title A kinome-wide RNAi screen identifies ALK as a target to sensitize neuroblastoma cells for HDAC8-inhibitor treatment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A43%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20kinome-wide%20RNAi%20screen%20identifies%20ALK%20as%20a%20target%20to%20sensitize%20neuroblastoma%20cells%20for%20HDAC8-inhibitor%20treatment&rft.jtitle=Cell%20death%20and%20differentiation&rft.au=Shen,%20Jing&rft.date=2018-12-01&rft.volume=25&rft.issue=12&rft.spage=2053&rft.epage=2070&rft.pages=2053-2070&rft.issn=1350-9047&rft.eissn=1476-5403&rft_id=info:doi/10.1038/s41418-018-0080-0&rft_dat=%3Cproquest_pubme%3E2139100401%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c470t-694deb52c7cb3024c815d58a9c2011171a99a41f57b36857a5464a3c636ebbfd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2139100401&rft_id=info:pmid/29515255&rfr_iscdi=true