Loading…
Are tracheal surveillance cultures useful in the intensive care unit?
Endotracheal aspirate (ETA) surveillance cultures have been used to predict the microorganisms responsible for ventilator associated pneumonia (VAP) in intensive care unit (ICU) patients for 3 decades. However, although more than a dozen studies have been performed, the usefulness and the safety of...
Saved in:
Published in: | Annals of translational medicine 2018-11, Vol.6 (21), p.421-421 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Endotracheal aspirate (ETA) surveillance cultures have been used to predict the microorganisms responsible for ventilator associated pneumonia (VAP) in intensive care unit (ICU) patients for 3 decades. However, although more than a dozen studies have been performed, the usefulness and the safety of this strategy are still debated. Tracheobronchial bacterial colonization often precedes the occurrence of VAP, and it has been postulated that the microbes present in the tracheal secretions a few days before VAP might be the same as those retrieved in the lower respiratory tract. A large number of studies, with heterogeneous designs and variable results, have questioned the possibility of predicting, by regular ETA cultures after the 48
hour of mechanical ventilation (MV), the microbiology of VAP and therefore of determining the adequate antibiotic therapy to limit the over-prescription of broad spectrum molecules when following guidelines. Although it has shown some promising results, the strategy has not achieved unanimity because of some discordant data. The aim of this review is to provide an updated overview of the literature available in the field and to attempt to determine the strengths and weaknesses of antibiotic stewardship based on ETA surveillance cultures in VAP, particularly in the global context of drug resistant microorganism emergence and the crucial necessity of broad spectrum molecule preservation. |
---|---|
ISSN: | 2305-5839 2305-5839 |
DOI: | 10.21037/atm.2018.08.39 |