Loading…

Decreasing the thresholds for electroporation by sensitizing cells with local cationic anesthetics and substances that decrease the surface negative electric charge

The recently described method of cell electroporation by flow of cell suspension through localized direct current electric fields (dcEFs) was applied to identify non-toxic substances that could sensitize cells to external electric fields. We found that local cationic anesthetics such as procaine, li...

Full description

Saved in:
Bibliographic Details
Published in:Cellular & molecular biology letters 2014-03, Vol.19 (1), p.65-76
Main Authors: Grys, Maciej, Madeja, Zbigniew, Korohoda, Włodzimierz
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The recently described method of cell electroporation by flow of cell suspension through localized direct current electric fields (dcEFs) was applied to identify non-toxic substances that could sensitize cells to external electric fields. We found that local cationic anesthetics such as procaine, lidocaine and tetracaine greatly facilitated the electroporation of AT2 rat prostate carcinoma cells and human skin fibroblasts (HSF). This manifested as a 50% reduction in the strength of the electric field required to induce cell death by irreversible electroporation or to introduce fluorescent dyes such as calcein, carboxyfluorescein or Lucifer yellow into the cells. A similar decrease in the electric field thresholds for irreversible and reversible cell electroporation was observed when the cells were exposed to the electric field in the presence of the non-toxic cationic dyes 9-aminoacridine (9-AAA) or toluidine blue. Identifying non-toxic, reversibly acting cell sensitizers may facilitate cancer tissue ablation and help introduce therapeutic or diagnostic substances into the cells and tissues.
ISSN:1689-1392
1425-8153
1689-1392
DOI:10.2478/s11658-013-0114-z