Loading…
PKC-β activation inhibits IL-18-binding protein causing endothelial dysfunction and diabetic atherosclerosis
Clinical observations showed a correlation between accelerated atherosclerosis in diabetes and high plasmatic level of IL-18, a pro-inflammatory cytokine. IL-18 enhances the production of inflammatory cytokines and cellular adhesion molecules contributing to atherosclerotic plaque formation and inst...
Saved in:
Published in: | Cardiovascular research 2015-05, Vol.106 (2), p.303-313 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Clinical observations showed a correlation between accelerated atherosclerosis in diabetes and high plasmatic level of IL-18, a pro-inflammatory cytokine. IL-18 enhances the production of inflammatory cytokines and cellular adhesion molecules contributing to atherosclerotic plaque formation and instability. Previous studies indicated that protein kinase C (PKC)-β inhibition prevented macrophage-induced cytokine expression involved in diabetic (DM) atherosclerotic plaque development. However, the role of PKC-β activation on IL-18/IL-18-binding protein (IL-18BP) pathway causing endothelial dysfunction and monocyte adhesion in diabetes has never been explored.
Apoe(-/-) mice were rendered DM and fed with western diet containing ruboxistaurin (RBX), a PKC-β inhibitor. After 20 weeks, atherosclerotic plaque composition was quantified. Compared with non-diabetic, DM mice exhibited elevated atherosclerotic plaque formation, cholestoryl ester content and macrophage infiltration, as well as reduced IL-18BP expression in the aorta which was prevented with RBX treatment. Endothelial cells (ECs) and macrophages were exposed to normal or high glucose (HG) levels with or without palmitate and recombinant IL-18 for 24 h. The combined HG and palmitate condition was required to increase IL-18 expression and secretion in macrophages, while it reduced IL-18BP expression in EC causing up-regulation of the vascular cell adhesion molecule (VCAM)-1 and monocyte adhesion. Elevated VCAM-1 expression and monocyte adherence were prevented by siRNA, RBX, and IL-18 neutralizing antibody.
Our study unrevealed a new mechanism by which PKC-β activation promotes EC dysfunction caused by the de-regulation of the IL-18/IL-18BP pathway, leading to increased VCAM-1 expression, monocyte/macrophage adhesion, and accelerated atherosclerotic plaque formation in diabetes. |
---|---|
ISSN: | 0008-6363 1755-3245 |
DOI: | 10.1093/cvr/cvv107 |