Loading…

Pathological Oxidation of PTPN12 Underlies ABL1 Phosphorylation in Hereditary Leiomyomatosis and Renal Cell Carcinoma

Hereditary leiomyomatosis and renal cell carcinoma (HLRCC) is an inherited cancer syndrome associated with a highly aggressive form of type 2 papillary renal cell carcinoma (PRCC). Germline inactivating alterations in fumarate hydratase ( FH ) cause HLRCC and result in elevated levels of reactive ox...

Full description

Saved in:
Bibliographic Details
Published in:Cancer research (Chicago, Ill.) Ill.), 2018-10, Vol.78 (23), p.6539-6548
Main Authors: Xu, Yang, Taylor, Paul, Andrade, Joshua, Ueberheide, Beatrix, Shuch, Brian, Glazer, Peter M., Bindra, Ranjit S., Moran, Michael F., Linehan, W. Marston, Neel, Benjamin G.
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hereditary leiomyomatosis and renal cell carcinoma (HLRCC) is an inherited cancer syndrome associated with a highly aggressive form of type 2 papillary renal cell carcinoma (PRCC). Germline inactivating alterations in fumarate hydratase ( FH ) cause HLRCC and result in elevated levels of reactive oxygen species (ROS). Recent work indicates that FH −/− PRCC cells have increased activation of ABL1, which promotes tumor growth, but how ABL1 is activated remains unclear. Given that oxidation can regulate protein-tyrosine phosphatase (PTP) catalytic activity, inactivation of an ABL-directed PTP by ROS might account for ABL1 activation in this malignancy. Our group previously developed “q-oxPTPome”, a method that globally monitors the oxidation of classical PTPs. In this study, we present a refined q-oxPTPome, increasing its sensitivity by >10X. Applying q-oxPTPome to FH-deficient cell models showed that multiple PTPs were either highly oxidized (including PTPN12) or overexpressed. Highly oxidized PTP were those with relatively high sensitivity to exogenous H 2 O 2 . Most PTP oxidation in FH-deficient cells was reversible, although nearly 40% of PTPN13 was irreversibly oxidized to the sulfonic acid state. Using substrate-trapping mutants, we mapped PTPs to their putative substrates and found that only PTPN12 could target ABL1. Furthermore, knockdown experiments identified PTPN12 as the major ABL1 phosphatase, and overexpression of PTPN12 inhibited ABL1 phosphorylation and HLRCC cell growth. These results show that ROS-induced oxidation of PTPN12 accounts for ABL1 phosphorylation in HLRCC-associated PRCC, revealing a novel mechanism for inactivating a tumor suppressor gene product and establishing a direct link between pathological PTP oxidation and neoplastic disease. This work demonstrates that the critical tumor-promoting ABL1 activity in HLRCC is induced by ROS-directed PTPN12 oxidation, illustrating a novel pathological mechanism of activation of an oncogenic kinase via oxidation-mediated inactivation of its cognate PTP.
ISSN:0008-5472
1538-7445
DOI:10.1158/0008-5472.CAN-18-0901