Loading…
Aluminum Ingestion Promotes Colorectal Hypersensitivity in Rodents
Background & Aims Irritable bowel syndrome (IBS) is a multifactorial disease arising from a complex interplay between genetic predisposition and environmental influences. To date, environmental triggers are not well known. Aluminum is commonly present in food, notably by its use as food additive...
Saved in:
Published in: | Cellular and molecular gastroenterology and hepatology 2019-01, Vol.7 (1), p.185-196 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background & Aims Irritable bowel syndrome (IBS) is a multifactorial disease arising from a complex interplay between genetic predisposition and environmental influences. To date, environmental triggers are not well known. Aluminum is commonly present in food, notably by its use as food additive. We investigated the effects of aluminum ingestion in rodent models of visceral hypersensitivity, and the mechanisms involved. Methods Visceral hypersensitivity was recorded by colorectal distension in rats administered with oral low doses of aluminum. Inflammation was analyzed in the colon of aluminum-treated rats by quantitative PCR for cytokine expression and by immunohistochemistry for immune cells quantification. Involvement of mast cells in the aluminum-induced hypersensitivity was determined by cromoglycate administration of rats and in mast cell-deficient mice (KitW-sh/W-sh ). Proteinase-activated receptor-2 (PAR2) activation in response to aluminum was evaluated and its implication in aluminum-induced hypersensitivity was assessed in PAR2 knockout mice. Results Orally administered low-dose aluminum induced visceral hypersensitivity in rats and mice. Visceral pain induced by aluminum persisted over time even after cessation of treatment, reappeared and was amplified when treatment resumed. As observed in humans, female animals were more sensitive than males. Major mediators of nociception were up-regulated in the colon by aluminum. Activation of mast cells and PAR2 were required for aluminum-induced hypersensitivity. Conclusions These findings indicate that oral exposure to aluminum at human dietary level reproduces clinical and molecular features of IBS, highlighting a new pathway of prevention and treatment of visceral pain in some susceptible patients. |
---|---|
ISSN: | 2352-345X 2352-345X |
DOI: | 10.1016/j.jcmgh.2018.09.012 |