Loading…

Integrated photonic platform for quantum information with continuous variables

Integrated quantum photonics provides a scalable platform for the generation, manipulation, and detection of optical quantum states by confining light inside miniaturized waveguide circuits. Here, we show the generation, manipulation, and interferometric stage of homodyne detection of nonclassical l...

Full description

Saved in:
Bibliographic Details
Published in:Science advances 2018-12, Vol.4 (12), p.eaat9331-eaat9331
Main Authors: Lenzini, Francesco, Janousek, Jiri, Thearle, Oliver, Villa, Matteo, Haylock, Ben, Kasture, Sachin, Cui, Liang, Phan, Hoang-Phuong, Dao, Dzung Viet, Yonezawa, Hidehiro, Lam, Ping Koy, Huntington, Elanor H, Lobino, Mirko
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Integrated quantum photonics provides a scalable platform for the generation, manipulation, and detection of optical quantum states by confining light inside miniaturized waveguide circuits. Here, we show the generation, manipulation, and interferometric stage of homodyne detection of nonclassical light on a single device, a key step toward a fully integrated approach to quantum information with continuous variables. We use a dynamically reconfigurable lithium niobate waveguide network to generate and characterize squeezed vacuum and two-mode entangled states, key resources for several quantum communication and computing protocols. We measure a squeezing level of - 1.38 ± 0.04 dB and demonstrate entanglement by verifying an inseparability criterion = 0.77 ± 0.02 < 1. Our platform can implement all the processes required for optical quantum technology, and its high nonlinearity and fast reconfigurability make it ideal for the realization of quantum computation with time encoded continuous-variable cluster states.
ISSN:2375-2548
2375-2548
DOI:10.1126/sciadv.aat9331