Loading…
Internal strain tunes electronic correlations on the nanoscale
In conventional metals, charge carriers basically move freely. In correlated electron materials, however, the electrons may become localized because of strong Coulomb interactions, resulting in an insulating state. Despite considerable progress in the last decades, elucidating the driving mechanisms...
Saved in:
Published in: | Science advances 2018-12, Vol.4 (12), p.eaau9123-eaau9123 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c483t-e4e83357d5679451ca02bd2847d92faab57033a238cfbdb8bec698bfa59d11623 |
---|---|
cites | cdi_FETCH-LOGICAL-c483t-e4e83357d5679451ca02bd2847d92faab57033a238cfbdb8bec698bfa59d11623 |
container_end_page | eaau9123 |
container_issue | 12 |
container_start_page | eaau9123 |
container_title | Science advances |
container_volume | 4 |
creator | Pustogow, A McLeod, A S Saito, Y Basov, D N Dressel, M |
description | In conventional metals, charge carriers basically move freely. In correlated electron materials, however, the electrons may become localized because of strong Coulomb interactions, resulting in an insulating state. Despite considerable progress in the last decades, elucidating the driving mechanisms that suppress metallic charge transport, the spatial evolution of this phase transition remains poorly understood on a microscopic scale. Here, we use cryogenic scanning near-field optical microscopy to study the metal-to-insulator transition in an electronically driven charge-ordered system with a 20-nm spatial resolution. In contrast to common mean-field considerations, we observe pronounced phase segregation with a sharp boundary between metallic and insulating regions evidencing its first-order nature. Considerable strain in the crystal spatially modulates the effective electronic correlations within a few micrometers, leading to an extended "zebra" pattern of metallic and insulating stripes. We can directly monitor the spatial strain distribution via a gradual enhancement of the optical conductivity as the energy gap is depressed. Our observations shed new light on previous analyses of correlation-driven metal-insulator transitions. |
doi_str_mv | 10.1126/sciadv.aau9123 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6294596</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2157654175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-e4e83357d5679451ca02bd2847d92faab57033a238cfbdb8bec698bfa59d11623</originalsourceid><addsrcrecordid>eNpVkU1LAzEQhoMoVmqvHmXx5KV1k2yym0tBxC8oeNFzmM3O2sg2qUm24L93S2uppxmYZ975eAm5ovmMUibvorHQbGYAvaKMn5ALxksxZaKoTo_yEZnE-JXnOS2kFFSdkxHPhRCKqgsyf3UJg4MuiymAdVnqHcYMOzQpeGdNZnwI2EGy3sXMD8ASMwfORwMdXpKzFrqIk30ck4-nx_eHl-ni7fn14X4xNUXF0xQLrDgXZSNkqQpBDeSsblhVlI1iLUAtypxzYLwybd3UVY1GqqpuQaiGUsn4mMx3uuu-XmFj0A3bdnod7ArCj_Zg9f-Ks0v96TdasmGekoPAzU7Ax2T18LiEZmm8c8OdmgopSyoG6HY_JfjvHmPSKxsNdh049H3UjIpSioKWW3S2Q03wMQZsD7vQXG_N0Ttz9N6coeH6-IID_mcF_wWNRo3N</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2157654175</pqid></control><display><type>article</type><title>Internal strain tunes electronic correlations on the nanoscale</title><source>American Association for the Advancement of Science</source><source>PubMed Central</source><creator>Pustogow, A ; McLeod, A S ; Saito, Y ; Basov, D N ; Dressel, M</creator><creatorcontrib>Pustogow, A ; McLeod, A S ; Saito, Y ; Basov, D N ; Dressel, M ; Energy Frontier Research Centers (EFRC) (United States). Programmable Quantum Materials (Pro-QM) ; Columbia Univ., New York, NY (United States) ; Pennsylvania State Univ., University Park, PA (United States)</creatorcontrib><description>In conventional metals, charge carriers basically move freely. In correlated electron materials, however, the electrons may become localized because of strong Coulomb interactions, resulting in an insulating state. Despite considerable progress in the last decades, elucidating the driving mechanisms that suppress metallic charge transport, the spatial evolution of this phase transition remains poorly understood on a microscopic scale. Here, we use cryogenic scanning near-field optical microscopy to study the metal-to-insulator transition in an electronically driven charge-ordered system with a 20-nm spatial resolution. In contrast to common mean-field considerations, we observe pronounced phase segregation with a sharp boundary between metallic and insulating regions evidencing its first-order nature. Considerable strain in the crystal spatially modulates the effective electronic correlations within a few micrometers, leading to an extended "zebra" pattern of metallic and insulating stripes. We can directly monitor the spatial strain distribution via a gradual enhancement of the optical conductivity as the energy gap is depressed. Our observations shed new light on previous analyses of correlation-driven metal-insulator transitions.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.aau9123</identifier><identifier>PMID: 30555919</identifier><language>eng</language><publisher>United States: AAAS</publisher><subject>charge transport ; Condensed Matter Physics ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; defects ; magnetism and spin physics ; materials and chemistry by design ; Materials Science ; mesoscale science ; mesostructured materials ; optics ; SciAdv r-articles ; superconductivity ; synthesis (novel materials) ; synthesis (self-assembly)</subject><ispartof>Science advances, 2018-12, Vol.4 (12), p.eaau9123-eaau9123</ispartof><rights>Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2018 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-e4e83357d5679451ca02bd2847d92faab57033a238cfbdb8bec698bfa59d11623</citedby><cites>FETCH-LOGICAL-c483t-e4e83357d5679451ca02bd2847d92faab57033a238cfbdb8bec698bfa59d11623</cites><orcidid>0000-0001-9785-5387 ; 0000-0003-1907-052X ; 0000-0001-9428-5083 ; 0000-0003-2844-7245 ; 0000000194285083 ; 0000000328447245 ; 000000031907052X ; 0000000197855387</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6294596/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6294596/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,2884,2885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30555919$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1566715$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Pustogow, A</creatorcontrib><creatorcontrib>McLeod, A S</creatorcontrib><creatorcontrib>Saito, Y</creatorcontrib><creatorcontrib>Basov, D N</creatorcontrib><creatorcontrib>Dressel, M</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Programmable Quantum Materials (Pro-QM)</creatorcontrib><creatorcontrib>Columbia Univ., New York, NY (United States)</creatorcontrib><creatorcontrib>Pennsylvania State Univ., University Park, PA (United States)</creatorcontrib><title>Internal strain tunes electronic correlations on the nanoscale</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>In conventional metals, charge carriers basically move freely. In correlated electron materials, however, the electrons may become localized because of strong Coulomb interactions, resulting in an insulating state. Despite considerable progress in the last decades, elucidating the driving mechanisms that suppress metallic charge transport, the spatial evolution of this phase transition remains poorly understood on a microscopic scale. Here, we use cryogenic scanning near-field optical microscopy to study the metal-to-insulator transition in an electronically driven charge-ordered system with a 20-nm spatial resolution. In contrast to common mean-field considerations, we observe pronounced phase segregation with a sharp boundary between metallic and insulating regions evidencing its first-order nature. Considerable strain in the crystal spatially modulates the effective electronic correlations within a few micrometers, leading to an extended "zebra" pattern of metallic and insulating stripes. We can directly monitor the spatial strain distribution via a gradual enhancement of the optical conductivity as the energy gap is depressed. Our observations shed new light on previous analyses of correlation-driven metal-insulator transitions.</description><subject>charge transport</subject><subject>Condensed Matter Physics</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>defects</subject><subject>magnetism and spin physics</subject><subject>materials and chemistry by design</subject><subject>Materials Science</subject><subject>mesoscale science</subject><subject>mesostructured materials</subject><subject>optics</subject><subject>SciAdv r-articles</subject><subject>superconductivity</subject><subject>synthesis (novel materials)</subject><subject>synthesis (self-assembly)</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpVkU1LAzEQhoMoVmqvHmXx5KV1k2yym0tBxC8oeNFzmM3O2sg2qUm24L93S2uppxmYZ975eAm5ovmMUibvorHQbGYAvaKMn5ALxksxZaKoTo_yEZnE-JXnOS2kFFSdkxHPhRCKqgsyf3UJg4MuiymAdVnqHcYMOzQpeGdNZnwI2EGy3sXMD8ASMwfORwMdXpKzFrqIk30ck4-nx_eHl-ni7fn14X4xNUXF0xQLrDgXZSNkqQpBDeSsblhVlI1iLUAtypxzYLwybd3UVY1GqqpuQaiGUsn4mMx3uuu-XmFj0A3bdnod7ArCj_Zg9f-Ks0v96TdasmGekoPAzU7Ax2T18LiEZmm8c8OdmgopSyoG6HY_JfjvHmPSKxsNdh049H3UjIpSioKWW3S2Q03wMQZsD7vQXG_N0Ttz9N6coeH6-IID_mcF_wWNRo3N</recordid><startdate>20181214</startdate><enddate>20181214</enddate><creator>Pustogow, A</creator><creator>McLeod, A S</creator><creator>Saito, Y</creator><creator>Basov, D N</creator><creator>Dressel, M</creator><general>AAAS</general><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9785-5387</orcidid><orcidid>https://orcid.org/0000-0003-1907-052X</orcidid><orcidid>https://orcid.org/0000-0001-9428-5083</orcidid><orcidid>https://orcid.org/0000-0003-2844-7245</orcidid><orcidid>https://orcid.org/0000000194285083</orcidid><orcidid>https://orcid.org/0000000328447245</orcidid><orcidid>https://orcid.org/000000031907052X</orcidid><orcidid>https://orcid.org/0000000197855387</orcidid></search><sort><creationdate>20181214</creationdate><title>Internal strain tunes electronic correlations on the nanoscale</title><author>Pustogow, A ; McLeod, A S ; Saito, Y ; Basov, D N ; Dressel, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-e4e83357d5679451ca02bd2847d92faab57033a238cfbdb8bec698bfa59d11623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>charge transport</topic><topic>Condensed Matter Physics</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>defects</topic><topic>magnetism and spin physics</topic><topic>materials and chemistry by design</topic><topic>Materials Science</topic><topic>mesoscale science</topic><topic>mesostructured materials</topic><topic>optics</topic><topic>SciAdv r-articles</topic><topic>superconductivity</topic><topic>synthesis (novel materials)</topic><topic>synthesis (self-assembly)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pustogow, A</creatorcontrib><creatorcontrib>McLeod, A S</creatorcontrib><creatorcontrib>Saito, Y</creatorcontrib><creatorcontrib>Basov, D N</creatorcontrib><creatorcontrib>Dressel, M</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Programmable Quantum Materials (Pro-QM)</creatorcontrib><creatorcontrib>Columbia Univ., New York, NY (United States)</creatorcontrib><creatorcontrib>Pennsylvania State Univ., University Park, PA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pustogow, A</au><au>McLeod, A S</au><au>Saito, Y</au><au>Basov, D N</au><au>Dressel, M</au><aucorp>Energy Frontier Research Centers (EFRC) (United States). Programmable Quantum Materials (Pro-QM)</aucorp><aucorp>Columbia Univ., New York, NY (United States)</aucorp><aucorp>Pennsylvania State Univ., University Park, PA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Internal strain tunes electronic correlations on the nanoscale</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2018-12-14</date><risdate>2018</risdate><volume>4</volume><issue>12</issue><spage>eaau9123</spage><epage>eaau9123</epage><pages>eaau9123-eaau9123</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>In conventional metals, charge carriers basically move freely. In correlated electron materials, however, the electrons may become localized because of strong Coulomb interactions, resulting in an insulating state. Despite considerable progress in the last decades, elucidating the driving mechanisms that suppress metallic charge transport, the spatial evolution of this phase transition remains poorly understood on a microscopic scale. Here, we use cryogenic scanning near-field optical microscopy to study the metal-to-insulator transition in an electronically driven charge-ordered system with a 20-nm spatial resolution. In contrast to common mean-field considerations, we observe pronounced phase segregation with a sharp boundary between metallic and insulating regions evidencing its first-order nature. Considerable strain in the crystal spatially modulates the effective electronic correlations within a few micrometers, leading to an extended "zebra" pattern of metallic and insulating stripes. We can directly monitor the spatial strain distribution via a gradual enhancement of the optical conductivity as the energy gap is depressed. Our observations shed new light on previous analyses of correlation-driven metal-insulator transitions.</abstract><cop>United States</cop><pub>AAAS</pub><pmid>30555919</pmid><doi>10.1126/sciadv.aau9123</doi><orcidid>https://orcid.org/0000-0001-9785-5387</orcidid><orcidid>https://orcid.org/0000-0003-1907-052X</orcidid><orcidid>https://orcid.org/0000-0001-9428-5083</orcidid><orcidid>https://orcid.org/0000-0003-2844-7245</orcidid><orcidid>https://orcid.org/0000000194285083</orcidid><orcidid>https://orcid.org/0000000328447245</orcidid><orcidid>https://orcid.org/000000031907052X</orcidid><orcidid>https://orcid.org/0000000197855387</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2375-2548 |
ispartof | Science advances, 2018-12, Vol.4 (12), p.eaau9123-eaau9123 |
issn | 2375-2548 2375-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6294596 |
source | American Association for the Advancement of Science; PubMed Central |
subjects | charge transport Condensed Matter Physics CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY defects magnetism and spin physics materials and chemistry by design Materials Science mesoscale science mesostructured materials optics SciAdv r-articles superconductivity synthesis (novel materials) synthesis (self-assembly) |
title | Internal strain tunes electronic correlations on the nanoscale |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T03%3A16%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Internal%20strain%20tunes%20electronic%20correlations%20on%20the%20nanoscale&rft.jtitle=Science%20advances&rft.au=Pustogow,%20A&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)%20(United%20States).%20Programmable%20Quantum%20Materials%20(Pro-QM)&rft.date=2018-12-14&rft.volume=4&rft.issue=12&rft.spage=eaau9123&rft.epage=eaau9123&rft.pages=eaau9123-eaau9123&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.aau9123&rft_dat=%3Cproquest_pubme%3E2157654175%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c483t-e4e83357d5679451ca02bd2847d92faab57033a238cfbdb8bec698bfa59d11623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2157654175&rft_id=info:pmid/30555919&rfr_iscdi=true |