Loading…

Internal strain tunes electronic correlations on the nanoscale

In conventional metals, charge carriers basically move freely. In correlated electron materials, however, the electrons may become localized because of strong Coulomb interactions, resulting in an insulating state. Despite considerable progress in the last decades, elucidating the driving mechanisms...

Full description

Saved in:
Bibliographic Details
Published in:Science advances 2018-12, Vol.4 (12), p.eaau9123-eaau9123
Main Authors: Pustogow, A, McLeod, A S, Saito, Y, Basov, D N, Dressel, M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c483t-e4e83357d5679451ca02bd2847d92faab57033a238cfbdb8bec698bfa59d11623
cites cdi_FETCH-LOGICAL-c483t-e4e83357d5679451ca02bd2847d92faab57033a238cfbdb8bec698bfa59d11623
container_end_page eaau9123
container_issue 12
container_start_page eaau9123
container_title Science advances
container_volume 4
creator Pustogow, A
McLeod, A S
Saito, Y
Basov, D N
Dressel, M
description In conventional metals, charge carriers basically move freely. In correlated electron materials, however, the electrons may become localized because of strong Coulomb interactions, resulting in an insulating state. Despite considerable progress in the last decades, elucidating the driving mechanisms that suppress metallic charge transport, the spatial evolution of this phase transition remains poorly understood on a microscopic scale. Here, we use cryogenic scanning near-field optical microscopy to study the metal-to-insulator transition in an electronically driven charge-ordered system with a 20-nm spatial resolution. In contrast to common mean-field considerations, we observe pronounced phase segregation with a sharp boundary between metallic and insulating regions evidencing its first-order nature. Considerable strain in the crystal spatially modulates the effective electronic correlations within a few micrometers, leading to an extended "zebra" pattern of metallic and insulating stripes. We can directly monitor the spatial strain distribution via a gradual enhancement of the optical conductivity as the energy gap is depressed. Our observations shed new light on previous analyses of correlation-driven metal-insulator transitions.
doi_str_mv 10.1126/sciadv.aau9123
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6294596</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2157654175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-e4e83357d5679451ca02bd2847d92faab57033a238cfbdb8bec698bfa59d11623</originalsourceid><addsrcrecordid>eNpVkU1LAzEQhoMoVmqvHmXx5KV1k2yym0tBxC8oeNFzmM3O2sg2qUm24L93S2uppxmYZ975eAm5ovmMUibvorHQbGYAvaKMn5ALxksxZaKoTo_yEZnE-JXnOS2kFFSdkxHPhRCKqgsyf3UJg4MuiymAdVnqHcYMOzQpeGdNZnwI2EGy3sXMD8ASMwfORwMdXpKzFrqIk30ck4-nx_eHl-ni7fn14X4xNUXF0xQLrDgXZSNkqQpBDeSsblhVlI1iLUAtypxzYLwybd3UVY1GqqpuQaiGUsn4mMx3uuu-XmFj0A3bdnod7ArCj_Zg9f-Ks0v96TdasmGekoPAzU7Ax2T18LiEZmm8c8OdmgopSyoG6HY_JfjvHmPSKxsNdh049H3UjIpSioKWW3S2Q03wMQZsD7vQXG_N0Ttz9N6coeH6-IID_mcF_wWNRo3N</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2157654175</pqid></control><display><type>article</type><title>Internal strain tunes electronic correlations on the nanoscale</title><source>American Association for the Advancement of Science</source><source>PubMed Central</source><creator>Pustogow, A ; McLeod, A S ; Saito, Y ; Basov, D N ; Dressel, M</creator><creatorcontrib>Pustogow, A ; McLeod, A S ; Saito, Y ; Basov, D N ; Dressel, M ; Energy Frontier Research Centers (EFRC) (United States). Programmable Quantum Materials (Pro-QM) ; Columbia Univ., New York, NY (United States) ; Pennsylvania State Univ., University Park, PA (United States)</creatorcontrib><description>In conventional metals, charge carriers basically move freely. In correlated electron materials, however, the electrons may become localized because of strong Coulomb interactions, resulting in an insulating state. Despite considerable progress in the last decades, elucidating the driving mechanisms that suppress metallic charge transport, the spatial evolution of this phase transition remains poorly understood on a microscopic scale. Here, we use cryogenic scanning near-field optical microscopy to study the metal-to-insulator transition in an electronically driven charge-ordered system with a 20-nm spatial resolution. In contrast to common mean-field considerations, we observe pronounced phase segregation with a sharp boundary between metallic and insulating regions evidencing its first-order nature. Considerable strain in the crystal spatially modulates the effective electronic correlations within a few micrometers, leading to an extended "zebra" pattern of metallic and insulating stripes. We can directly monitor the spatial strain distribution via a gradual enhancement of the optical conductivity as the energy gap is depressed. Our observations shed new light on previous analyses of correlation-driven metal-insulator transitions.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.aau9123</identifier><identifier>PMID: 30555919</identifier><language>eng</language><publisher>United States: AAAS</publisher><subject>charge transport ; Condensed Matter Physics ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; defects ; magnetism and spin physics ; materials and chemistry by design ; Materials Science ; mesoscale science ; mesostructured materials ; optics ; SciAdv r-articles ; superconductivity ; synthesis (novel materials) ; synthesis (self-assembly)</subject><ispartof>Science advances, 2018-12, Vol.4 (12), p.eaau9123-eaau9123</ispartof><rights>Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2018 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-e4e83357d5679451ca02bd2847d92faab57033a238cfbdb8bec698bfa59d11623</citedby><cites>FETCH-LOGICAL-c483t-e4e83357d5679451ca02bd2847d92faab57033a238cfbdb8bec698bfa59d11623</cites><orcidid>0000-0001-9785-5387 ; 0000-0003-1907-052X ; 0000-0001-9428-5083 ; 0000-0003-2844-7245 ; 0000000194285083 ; 0000000328447245 ; 000000031907052X ; 0000000197855387</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6294596/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6294596/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,2884,2885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30555919$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1566715$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Pustogow, A</creatorcontrib><creatorcontrib>McLeod, A S</creatorcontrib><creatorcontrib>Saito, Y</creatorcontrib><creatorcontrib>Basov, D N</creatorcontrib><creatorcontrib>Dressel, M</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Programmable Quantum Materials (Pro-QM)</creatorcontrib><creatorcontrib>Columbia Univ., New York, NY (United States)</creatorcontrib><creatorcontrib>Pennsylvania State Univ., University Park, PA (United States)</creatorcontrib><title>Internal strain tunes electronic correlations on the nanoscale</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>In conventional metals, charge carriers basically move freely. In correlated electron materials, however, the electrons may become localized because of strong Coulomb interactions, resulting in an insulating state. Despite considerable progress in the last decades, elucidating the driving mechanisms that suppress metallic charge transport, the spatial evolution of this phase transition remains poorly understood on a microscopic scale. Here, we use cryogenic scanning near-field optical microscopy to study the metal-to-insulator transition in an electronically driven charge-ordered system with a 20-nm spatial resolution. In contrast to common mean-field considerations, we observe pronounced phase segregation with a sharp boundary between metallic and insulating regions evidencing its first-order nature. Considerable strain in the crystal spatially modulates the effective electronic correlations within a few micrometers, leading to an extended "zebra" pattern of metallic and insulating stripes. We can directly monitor the spatial strain distribution via a gradual enhancement of the optical conductivity as the energy gap is depressed. Our observations shed new light on previous analyses of correlation-driven metal-insulator transitions.</description><subject>charge transport</subject><subject>Condensed Matter Physics</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>defects</subject><subject>magnetism and spin physics</subject><subject>materials and chemistry by design</subject><subject>Materials Science</subject><subject>mesoscale science</subject><subject>mesostructured materials</subject><subject>optics</subject><subject>SciAdv r-articles</subject><subject>superconductivity</subject><subject>synthesis (novel materials)</subject><subject>synthesis (self-assembly)</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpVkU1LAzEQhoMoVmqvHmXx5KV1k2yym0tBxC8oeNFzmM3O2sg2qUm24L93S2uppxmYZ975eAm5ovmMUibvorHQbGYAvaKMn5ALxksxZaKoTo_yEZnE-JXnOS2kFFSdkxHPhRCKqgsyf3UJg4MuiymAdVnqHcYMOzQpeGdNZnwI2EGy3sXMD8ASMwfORwMdXpKzFrqIk30ck4-nx_eHl-ni7fn14X4xNUXF0xQLrDgXZSNkqQpBDeSsblhVlI1iLUAtypxzYLwybd3UVY1GqqpuQaiGUsn4mMx3uuu-XmFj0A3bdnod7ArCj_Zg9f-Ks0v96TdasmGekoPAzU7Ax2T18LiEZmm8c8OdmgopSyoG6HY_JfjvHmPSKxsNdh049H3UjIpSioKWW3S2Q03wMQZsD7vQXG_N0Ttz9N6coeH6-IID_mcF_wWNRo3N</recordid><startdate>20181214</startdate><enddate>20181214</enddate><creator>Pustogow, A</creator><creator>McLeod, A S</creator><creator>Saito, Y</creator><creator>Basov, D N</creator><creator>Dressel, M</creator><general>AAAS</general><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9785-5387</orcidid><orcidid>https://orcid.org/0000-0003-1907-052X</orcidid><orcidid>https://orcid.org/0000-0001-9428-5083</orcidid><orcidid>https://orcid.org/0000-0003-2844-7245</orcidid><orcidid>https://orcid.org/0000000194285083</orcidid><orcidid>https://orcid.org/0000000328447245</orcidid><orcidid>https://orcid.org/000000031907052X</orcidid><orcidid>https://orcid.org/0000000197855387</orcidid></search><sort><creationdate>20181214</creationdate><title>Internal strain tunes electronic correlations on the nanoscale</title><author>Pustogow, A ; McLeod, A S ; Saito, Y ; Basov, D N ; Dressel, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-e4e83357d5679451ca02bd2847d92faab57033a238cfbdb8bec698bfa59d11623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>charge transport</topic><topic>Condensed Matter Physics</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>defects</topic><topic>magnetism and spin physics</topic><topic>materials and chemistry by design</topic><topic>Materials Science</topic><topic>mesoscale science</topic><topic>mesostructured materials</topic><topic>optics</topic><topic>SciAdv r-articles</topic><topic>superconductivity</topic><topic>synthesis (novel materials)</topic><topic>synthesis (self-assembly)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pustogow, A</creatorcontrib><creatorcontrib>McLeod, A S</creatorcontrib><creatorcontrib>Saito, Y</creatorcontrib><creatorcontrib>Basov, D N</creatorcontrib><creatorcontrib>Dressel, M</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Programmable Quantum Materials (Pro-QM)</creatorcontrib><creatorcontrib>Columbia Univ., New York, NY (United States)</creatorcontrib><creatorcontrib>Pennsylvania State Univ., University Park, PA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pustogow, A</au><au>McLeod, A S</au><au>Saito, Y</au><au>Basov, D N</au><au>Dressel, M</au><aucorp>Energy Frontier Research Centers (EFRC) (United States). Programmable Quantum Materials (Pro-QM)</aucorp><aucorp>Columbia Univ., New York, NY (United States)</aucorp><aucorp>Pennsylvania State Univ., University Park, PA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Internal strain tunes electronic correlations on the nanoscale</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2018-12-14</date><risdate>2018</risdate><volume>4</volume><issue>12</issue><spage>eaau9123</spage><epage>eaau9123</epage><pages>eaau9123-eaau9123</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>In conventional metals, charge carriers basically move freely. In correlated electron materials, however, the electrons may become localized because of strong Coulomb interactions, resulting in an insulating state. Despite considerable progress in the last decades, elucidating the driving mechanisms that suppress metallic charge transport, the spatial evolution of this phase transition remains poorly understood on a microscopic scale. Here, we use cryogenic scanning near-field optical microscopy to study the metal-to-insulator transition in an electronically driven charge-ordered system with a 20-nm spatial resolution. In contrast to common mean-field considerations, we observe pronounced phase segregation with a sharp boundary between metallic and insulating regions evidencing its first-order nature. Considerable strain in the crystal spatially modulates the effective electronic correlations within a few micrometers, leading to an extended "zebra" pattern of metallic and insulating stripes. We can directly monitor the spatial strain distribution via a gradual enhancement of the optical conductivity as the energy gap is depressed. Our observations shed new light on previous analyses of correlation-driven metal-insulator transitions.</abstract><cop>United States</cop><pub>AAAS</pub><pmid>30555919</pmid><doi>10.1126/sciadv.aau9123</doi><orcidid>https://orcid.org/0000-0001-9785-5387</orcidid><orcidid>https://orcid.org/0000-0003-1907-052X</orcidid><orcidid>https://orcid.org/0000-0001-9428-5083</orcidid><orcidid>https://orcid.org/0000-0003-2844-7245</orcidid><orcidid>https://orcid.org/0000000194285083</orcidid><orcidid>https://orcid.org/0000000328447245</orcidid><orcidid>https://orcid.org/000000031907052X</orcidid><orcidid>https://orcid.org/0000000197855387</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2375-2548
ispartof Science advances, 2018-12, Vol.4 (12), p.eaau9123-eaau9123
issn 2375-2548
2375-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6294596
source American Association for the Advancement of Science; PubMed Central
subjects charge transport
Condensed Matter Physics
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
defects
magnetism and spin physics
materials and chemistry by design
Materials Science
mesoscale science
mesostructured materials
optics
SciAdv r-articles
superconductivity
synthesis (novel materials)
synthesis (self-assembly)
title Internal strain tunes electronic correlations on the nanoscale
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T03%3A16%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Internal%20strain%20tunes%20electronic%20correlations%20on%20the%20nanoscale&rft.jtitle=Science%20advances&rft.au=Pustogow,%20A&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)%20(United%20States).%20Programmable%20Quantum%20Materials%20(Pro-QM)&rft.date=2018-12-14&rft.volume=4&rft.issue=12&rft.spage=eaau9123&rft.epage=eaau9123&rft.pages=eaau9123-eaau9123&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.aau9123&rft_dat=%3Cproquest_pubme%3E2157654175%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c483t-e4e83357d5679451ca02bd2847d92faab57033a238cfbdb8bec698bfa59d11623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2157654175&rft_id=info:pmid/30555919&rfr_iscdi=true